Lecture 5: Quick review from previous lecture

Whan

- We talked about what is the inverse of a given square matrix A, that is, if A is a square matrix, then we call $n \times n$ matrix X the inverse of A if

$$
\begin{aligned}
& \text { right inverse left inverse } \\
& A X=I_{n}=\widehat{X} A \text {. }
\end{aligned}
$$

We denote X (inverse of A) by A^{-1}.

- If the inverse of a matrix A exists, then this inverse matrix is "unique". We call A is "invertible"

Today we will

- continue discuss Sec. 1.5 Matrix Inverse

- Lecture will be recorded -

- The first homework is due $\operatorname{Today}(1 / 29)$ at 6 pm .
\S The inverse of a 2×2 matrix.
Consider 2-by-2 matrix $A=\binom{a}{{ }_{c} X_{d}^{b}}$
If $a d-b c \neq 0$, then A has an inverse given by:

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

The number " $a d-b c$ " is known as the determinant of A, denoted by

$$
\operatorname{det}(A)=a d-b c
$$

In general, the determinant $\operatorname{det}(A)$ can be defined for a square matrix A of any size [Will discussed in later lectures], and

$$
A \text { is invertible if and only if } \operatorname{det}(A) \neq 0
$$

Example 2: (1) Find the inverse of $A=\left(\begin{array}{cc}2 & 3 \\ 4 & 5\end{array}\right)$.

$$
\begin{aligned}
\operatorname{det} A & =2 \cdot 5-3 \cdot 4=10-12=-2 \neq 0 \\
A^{-1} & =\frac{1}{-2}\left[\begin{array}{cc}
5 & -3 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
-5 / 2 & 3 / 2 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

Check: $A^{-1} A=I_{2}=A A^{-1}$.
(2) Is the matrix $A=\left(\begin{array}{cc}2 & 3 \\ 4 & 6\end{array}\right)$ invertible? ($\left.\sim \infty\right)$
$\operatorname{det} A=2 \cdot 6-12=0$.
observation: $2^{\text {nd }}$ sow of $A=2\left(1^{\text {re }}\right.$ row $)$.
\S The inverse of a 2×2 matrix.
If you are interested in how we get the formula of the inverse of a 2×2 matrix above, the explanation/computations is as follows: (See also Example 1.15 in page
31 in Textbook)
Consider a general 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Let's compute its inverse $X=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ if it exists. (that is, check $X A=I$ $A X=I)$.
(1) $A X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
\left\{\begin{array}{l}
a x+b z=1 \\
a y+b w=0 \\
c x+d z=0 \\
c y+d w=1
\end{array} \quad \Rightarrow\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) .\right.
$$

Using Gansian - Elimination to solve 4×4 linear system:
Case 1: $\quad a \neq 0$

$$
\begin{aligned}
& \xrightarrow{(3)-\frac{c}{a}(1)}\left(\begin{array}{cccc|c}
a & 0 & b & 0 & 1 \\
0 & a & 0 & b & 0 \\
0 & 0 & d-b / a & 0 & -c / a \\
0 & c & 0 & d & 1
\end{array}\right) \\
& \left(4-\frac{c}{a}(2)\right. \\
& \\
& a
\end{aligned}\left(\begin{array}{cccc|c}
a & b & 0 & 1 \\
0 & a & 0 & b & 0 \\
0 & 0 & d-b / a & 0 & -c / a \\
0 & 0 & 0 & d-b / a & 1
\end{array}\right)
$$

By Back substitution, we get

$$
\left\{\begin{array}{l}
\omega=\frac{a}{a d-b c} \text { if } a d-b c \neq 0 \\
A \text { has NO, inverse if } a d-b c_{\text {Fail } 20} O
\end{array}\right.
$$

[Continue (8) the computation:]
Thus $x=\frac{d}{a d-b c}, y=\frac{-b}{a d-b c}, z=\frac{-c}{a d-b c}, w=\frac{a}{a d-b c}$ if $a d-b c \neq 0$.

Case 2: $\quad a=0$.
Suppose also $c \neq 0$.
Similar computations give the same formula if $a d-b c \neq 0$.

Case 3: $a=0, c=0$.
Then A has $N O$ inverse.

1.5 Matrix Inverse (Continue ...)

§ Introduction to Gauss-Jordan Elimination.

We have discussed two type of elementary row operators:

- type 1 - adding/subtracting one row to another row ;
- type 2 - permuting the order of rows (pivoting).

Now for Gauss-Jordan Elimination, in addition to type 1 and type 2 row operators above, we will use the $3^{\text {rd }}$ elementary row operator, that is,

- type 3 -scaling a row of A by a nonzero multiple.

Note that "In the linear systems, multiplying one equation by a non-zero number obviously does NOT change the solution to the system."

Like the other elementary row operations, we have
Example 3: The elementary matrix that associated to the "scales the $2^{\text {nd }}$ row by 8 is":

$$
I_{2} \xrightarrow{8(2)} E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Let A be the 3 -by- 4 matrix

$$
A=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right)
$$

Then

$$
E A=\left(\begin{array}{cccc}
a & b & c & d \\
8 e & 8 f & 8 g & 8 h \\
i & j & k & l
\end{array}\right)
$$

§ Gauss-Jordan elimination

The goal is to find the matrix X (the inverse of A) satisfying

$$
A X=X A=I
$$

Before we start, let's recall that
Let A be a $m \times n$ matrix. Generally, we say $n \times m$ matrix B is aleft inverse of A if $B A=I_{n}$; and we say $n \times m$ matrix C is a right inverse of A if $A C=I_{m}$.

We also state a fact below:

Fact 4: Let A be a $n \times n$ (square) matrix. If X is the right inverse of A, then such X is automatically be the left inverse of A.

The Gauss-Jordan Elimination is to perform elementary row operations:

- type 1 -adding/subtracting one row to another row ;
- type 2 - permuting the order of rows (pivoting);
- type 3 -scaling a row of A by a nonzero multiple.
to A and then

$$
\text { turn } A \text { into } I \text { (the identity matrix), }
$$

if that is possible.

$$
\left(E_{m} E_{m-1} \cdots E_{2} E_{1}\right) A=I
$$

where E_{1}, \ldots, E_{m} is elementary matrix associated to type 1 or type 2 or type 3 .
Then

$$
A^{-1}=E_{m} E_{m-1} \cdots E_{2} E_{1} .
$$

§ The operations to convert A to I are broken into 3 stages.
(1) bring $A \rightarrow$ upper triangular form;
(2) divide each row of A by the corresponding pivot (ie. that row's diagonal delemont)
(3) More row operations to clear out the elements above the diagonal of A, and turn it into the identity.

$$
\left.A \xrightarrow{(1)}\left[\begin{array}{l}
(2) \\
0
\end{array}\right] \xrightarrow{1} \begin{array}{ll}
1 & \ddots \\
0 & 1
\end{array}\right] \xrightarrow{(3)}\left[\begin{array}{lll}
1 & & 0 \\
0 & \ddots & 1
\end{array}\right] .
$$

Example 4. Find the inverse A^{-1} of

$$
A=\left(\begin{array}{rrr}
0 & -1 & 0 \\
2 & 1 & 0 \\
1 & 1 & 3
\end{array}\right)
$$

argumented matrix.

$$
\begin{aligned}
&\left(\begin{array}{cccccc}
A & & I_{3}
\end{array}\right) \\
&=\left(\begin{array}{ccccccc}
0 & -1 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 3 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{(1)}\left(\begin{array}{ccc|ccc}
1 & 1 & 3 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow{(2)-2(1)}\left(\begin{array}{ccc|ccc}
1 & 1 & 3 & 0 & 0 & 1 \\
0 & -1 & -6 & 0 & 1 & -2 \\
0 & -1 & 0 & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow{(2)}\left(\begin{array}{ccc|ccc}
1 & 1 & 3 \\
0 & -1 & -6 & 0 & 1 & -2 \\
0 & 0 & 6 & 1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

$\xrightarrow[-1(2), \frac{1}{6} 3^{3} \ldots]]{\text { [Example continue... }}\left(\begin{array}{lll}1 & X^{3} & 3 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array} \left\lvert\, \begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 / 6 & -1 / 6 & 1 / 3\end{array}\right.\right)$

$$
\begin{aligned}
& \stackrel{(2)-6(3)}{(1)-3(3)}\left(\begin{array}{lll|ccc}
1 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 / 6 & -1 / 6 & 1 / 3
\end{array}\right) \\
& \xrightarrow{\text { (1) (2) }}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \left\lvert\, \begin{array}{ccc}
{[1 / 2} & 1 / 2 & 0 \\
-1 & 0 & 0 \\
1 / 6 & -1 / 6 & 1 / 3
\end{array}\right.\right) \\
& A^{-1}=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 & 0 & 0 \\
1 / 6 & -1 / 6 & 1 / 3
\end{array}\right) \quad \not \quad 4
\end{aligned}
$$

Check $A^{-1} A=I_{3}$. $\quad \Gamma \sqrt{A}=A\left(A^{-1} b\right)$
Fact 5: If matrix A is nonsingular, then $x=A^{-1} b$ is the unique solution to the linear system $A x=b$.

Example 5. Let $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. Solve the system $A \mathbf{x}=\mathbf{b}$. with same Above.

$$
\begin{aligned}
x=A^{-1} b & =\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 & 0 & 0 \\
1 / 6 & -1 / 6 & 1 / 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{1}{2} \\
-1 \\
1 / 2
\end{array}\right)
\end{aligned}
$$

\S Turn to diagonal matrices. $\left[\begin{array}{cc}d_{1} & 0 \\ 0 & \\ 0 & d m\end{array}\right]$
Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right) \stackrel{\text { is an } m \text {-by- } m}{ }$ diagonalmmatrix.

1. $D A$ is equal to A with the $i^{\text {th }}$ row scaled by d_{i}.

Example 6.

$$
D=\left(\begin{array}{ccc}
-_{1}^{d_{1}} & 0 & 0 \\
0 & (2) & 0 \\
0 & 0 & 4 \\
d_{2} & 0 \\
d_{3} .
\end{array}, A=\left(\begin{array}{cc}
a & d \\
b & e \\
c & f
\end{array}\right)\right.
$$

Then $D A=\left(\begin{array}{ccc}-1 & 0 & u \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right)\left(\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right)=\left(\begin{array}{cc}-a & -d \\ 2 b & 2 \\ 4 c & f\end{array}\right)$.
2. D is invertible if all of its diagonal entries are non-zero. $\left(d_{i} \neq 0\right)$

Example 7. Same matrix D as above, find D^{-1}.

$$
D^{-1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 4
\end{array}\right)
$$

check $D^{-1} D=I_{3}$
3. Let D_{1} and D_{2} be 2 diagonal matrices. Then so is $D_{1} D_{2}$.

§ LDV factorization

Definition: When a triangular matrix has all 1's on its diagonal, we say it is unitriangular.

We already know if A is a regular matrix, we can write

$$
\begin{aligned}
& \text { ular matrix, we can write } \\
& \qquad A=L U, \quad=\left[\begin{array}{ll}
1 & \\
\Delta & 1
\end{array}\right]\left[\begin{array}{l}
\square \\
0
\end{array}\right]
\end{aligned}
$$

- U : upper triangular with non-zero diagonal elements (the pivots)
- L : lower unitriangular, meaning it is lower triangular with all diagonal elements equal to 1

Then turn U into

$$
U=\underline{D V}=\left[\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{n} \\
& & \\
\text { trix } V \text { is upper unitrian }
\end{array}\right]\left[\begin{array}{lll}
1 & & \boxed{ } \\
& \ddots & \ddots \\
0 & \ddots & \\
\hline
\end{array}\right] .
$$

where D is diagonal matrix and matrix V is upper unitriangular.

Example 8.

Let $A=L U$, where $L=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 1\end{array}\right), U=\left(\begin{array}{rrr}3 & 1 & 0 \\ 0 & -2 & 8 \\ 0 & 0 & 7\end{array}\right)$.
Find $L D V$ factorization of A.

$$
\begin{aligned}
& U=\left[\begin{array}{ccc}
3 & -2 & 0 \\
0 & & 7
\end{array}\right][\square \\
& T o \text { be continued! }
\end{aligned}
$$

Fact 6: If A is nonsingular, we can form the permuted $L D V$ factorization

$$
P A=L D V,
$$

where P is a permutation matrix, L is lower unitriangular, D is diagonal, and V is upper unitriangular.

Poll Question 1: Let $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$. Then $D^{-1}=$
A) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right) ; \quad \quad B Y\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 5\end{array}\right)$.

Poll Question 2: Consider the permutation matrix $P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
Then $P^{-1}=$

* You should be able to see the pop up Zoom question. Answer the question by clicking the corresponding answer and then submit.

Caution: after clicking submit, you will not be able to resubmit your answer!

