Lecture 6: Quick review from previous lecture

• We talked about what is the inverse of a given square matrix A, that is, if A is a square matrix, then its **inverse** A^{-1} is the $n \times n$ matrix satisfying

$$AA^{-1} = I_n = A^{-1}A.$$

- If A and B are two invertible *n*-by-*n* matrices, then their product AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- If $ad bc \neq 0$, then the 2-by-2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has an inverse given by:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- If matrix A is **nonsingular**, then $\mathbf{x} = A^{-1}\mathbf{b}$ is the unique solution to the linear system $A\mathbf{x} = \mathbf{b}$.
- Gauss-Jordan Elimination to find the inverse of a general square matrix.

 $(A | I_n) \xrightarrow{type '} (I_n | A^{-1})$ $\xrightarrow{type 2} \xrightarrow{type 3}$

Today we will discuss

- 1.6 Transposes and Symmetric Matrices
- 1.8 General linear system

- Lecture will be recorded -

§ LDV factorization

Definition: When a triangular matrix has all 1's on its diagonal, we say it is **unitriangular**. We already know if A is a **regular** matrix, we can write A = LU, **=**

- U: upper triangular with non-zero diagonal elements (the pivots)
- L : lower **uni**triangular, meaning it is lower triangular with all diagonal elements equal to 1

Then turn U into

U = DV

where D is diagonal matrix and matrix V is upper unitriangular.

Example 8.

Let
$$A = LU$$
, where $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 3 & 1 & 0 \\ 0 & -2 & 8 \\ 0 & 0 & 7 \end{pmatrix}$.
Find LDV factorization of A.
$$= \begin{pmatrix} 3 & \circ & \circ \\ \circ & -2 & \circ \\ \circ & -2 & \circ \\ \circ & 0 & 7 \end{pmatrix} \begin{pmatrix} 1 & 1/3 & 0 \\ \circ & 1 & -4 \\ \circ & \circ & 1 \end{pmatrix}$$

Fact 6: If A is nonsingular, we can form the permuted LDV factorization $PA = LT \implies PA = LDV$, where P is a permutation matrix, L is lower **uni**triangular, D is diagonal, and

where P is a permutation matrix, L is lower **uni**triangular, D is diagonal, an V is upper **uni**triangular.

Example 9. Find LDV factorization of

$$A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 3 & -3 \\ -2 & -6 & -2 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}$$

Answer: From Example 4 in Lecture 3, we have known PA = LU where

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$
$$IJ = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} N \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} N \end{bmatrix}$$

- A few additional comments; for details, refer to $\S1.5$ in the textbook
- A triangular matrix is nonsingular if and only if all of its diagonal elements are non-zero; see page 39 in the book.
- Any lower triangular matrix with all non-zero diagonal elements has a **lower triangular inverse**, and any lower unitriangular matrix has a lower unitriangular inverse. Ditto if "lower" is replaced with "upper". Again, see page 39. ¹

 $^{^{1}}$ Lower triangular: all entries above the diagonal are zero.

Lower unitriangular: all entries above the diagonal are zero and entries on diagonal are all 1.

1.6 Transposes and Symmetric Matrices

If A is a matrix of any dimensions, then its **transpose**, denoted A^T , is the matrix that switches the roles of the rows and columns of A.

Example 1. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}$$
 then $A^T = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix}$
 4×2

In particular, if A is an m-by-n matrix, then A^T is an n-by-m matrix.

\S Some basic properties of the transposition operations.

1. Taking the transpose twice returns you to the original matrix: $\begin{array}{c} (A^T)^T = A \\ \hline EX^{=} & (A^T)^T = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 7 & 6 \end{pmatrix}_{2X4} = A \end{array}$

Transposition is compatible with matrix addition and scalar multiplication.

2. If A and B are matrices of the same dimensions and c is a scalar, then:

$$(A+B)^T = A^T + B^T$$
and
$$(cA)^T = cA^T$$

5. A matrix is said to be **symmetric** if it is equal to its own transpose.

$$A = A^T$$

Example 2. The matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ is symmetric. $(A = A^{T})$

*By necessity, symmetric matrices must be square.

where L is a lower unitriangular matrix and D is a diagonal matrix with <u>nonzero</u> diagonal entries.

* If A is **regular** and A = LU, then LU factorization is **unique**. Moreover, its LDV factorization is also **unique**.

|Proof.| (=>) A is symmetric regular. Show A= LDLT. Since A is regular, A = LDV $A^{T} = (LDV)^{T} \stackrel{!}{\cong} V^{T}D^{T}L^{T} = V$ lower unitriangulor upp A = COV Since LDV-factorization $V = I^T -$ $\mathbf{L} = \mathbf{\nabla}^{\mathsf{T}}$ Then A= LDV=LDLT $(\Leftarrow) A = LDL^{T}$. Check $A = A^{T}$. $A^{\mathsf{T}} = (L D L^{\mathsf{T}})^{\mathsf{T}} = (L^{\mathsf{T}})^{\mathsf{T}} D^{\mathsf{T}} L^{\mathsf{T}}$ $= L D I = A. \bigstar$

- For any nonsingular matrix A, we can use the decomposition PA = LDV to solve a linear system $A\mathbf{x} = \mathbf{b}$. First solve $L\mathbf{y} = P\mathbf{b}$ then $D\mathbf{z} = \mathbf{y}$, then $V\mathbf{x} = \mathbf{z}$.
- Using the LDV or LDL^T decompositions is typically not any easier than using LU for solving linear systems. But writing the symmetric version LDL^T can have some advantages we will see later in the semester.

 $PAx = Pb \implies LDVx = Pb$ $\begin{cases} Ly = Pb \\ Dz = y \\ Vx = z \end{cases}$

1.8 General linear system

Consider a $m \times n$ matrix A. Here A may be a rectangular matrix or square matrix.

Let's look at the following different situations:

1. the number of equations < the number of variables m < n:

Example 1. Solve the linear system: