Lecture 6: Quick review from previous lecture

- We talked about what is the inverse of a given square matrix A, that is, if A is a square matrix, then its inverse A^{-1} is the $n \times n$ matrix satisfying

$$
A A^{-1}=I_{n}=A^{-1} A .
$$

- If A and B are two invertible n-by- n matrices, then their product $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
- If $a d-b c \neq 0$, then the 2-by-2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has an inverse given by:

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

- If matrix A is nonsingular, then $\mathbf{x}=A^{-1} \mathbf{b}$ is the unique solution to the linear system $A \mathbf{x}=\mathbf{b}$.
- Gauss-Jordan Elimination to find the inverse of a general square matrix.

Today we will discuss

$$
\left(A \mid I_{n}\right) \xrightarrow[\text { type } 2]{\text { type } 1}\left(I_{n} \mid A^{-1}\right)
$$

- 1.6 Transposes and Symmetric Matrices
- 1.8 General linear system
- Lecture will be recorded -

§ LDV factorization

Definition: When a triangular matrix has all 1's on its diagonal, we say it is unitriangular.

We already know if A is a regular matrix, we can

$$
A=L U,=\left[\begin{array}{cc}
1 & 0 \\
\vdots & 1
\end{array}\right][\square]
$$

- U : upper triangular with non-zero diagonal elements (the pivots)
- L : lower unitriangular, meaning it is lower triangular with all diagonal alemints equal to 1

Then turn U into

$$
U=D V
$$

where D is diagonal matrix and matrix V is upper unitriangular.

Example 8.

Let $A=L U$, where $L=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 1\end{array}\right), U=\left(\begin{array}{rrr}3 & 1 & 0 \\ 0 & -2 & 8 \\ 0 & 0 & 7\end{array}\right)$.
Find $L D V$ factorization of A.

$$
=\begin{gathered}
=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 7
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 / 3 & 0 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right) \\
D \\
V
\end{gathered}
$$

Fact 6: If A is nonsingular, we can form the permuted $L D V$ factorization

$$
P A=L U \quad \Rightarrow \quad P A=L D V,
$$

where P is a permutation matrix, L is lower unitriangular, D is diagonal, and V is upper unitriangular.

Example 9. Find $L D V$ factorization of

$$
A=\left(\begin{array}{rrrr}
1 & 3 & 1 & 2 \\
2 & 6 & 3 & -3 \\
-2 & -6 & -2 & 1 \\
1 & 2 & 1 & 3
\end{array}\right)
$$

Answer: From Example 4 in Lecture 3, we have known $P A=L \mathbb{U}$ where $P=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), L=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1\end{array}\right), U=\left(\begin{array}{rrrr}1 & 3 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 5\end{array}\right)$

$$
\tau=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]\left[\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A=\left[\Delta^{0}\right], \quad A^{-1}=\left[\Delta^{0}\right]
$$

- A few additional comments; for details, refer to $\S 1.5$ in the textbook
- A triangular matrix is nonsingular if and only if all of its diagonal elements are non-zero; see page 39 in the book.
- Any lower triangular matrix with all non-zero diagonal elements has a lower triangular inverse, and any lower unitriangular matrix has a lower unitriangular inverse. Ditto if "lower" is replaced with "upper". Again, see page 39. ${ }^{1}$

[^0]
1.6 Transposes and Symmetric Matrices

If A is a matrix of any dimensions, then its transpose, denoted A^{T}, is the matrix that switches the roles of the rows and columns of A.

Example 1. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8\end{array}\right)_{4 \times 2}$ then $A^{T}=\left(\begin{array}{llll}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8\end{array}\right)_{\mathbf{2} \times 4}$.
In particular, if A is an m-by- n matrix, then A^{T} is an n-by- m matrix.

§ Some basic properties of the transposition operations.

1. Taking the transpose twice returns you to the original matrix:

$$
\left(A^{T}\right)^{T}=A
$$

$$
E X=\left(A^{\top}\right)^{\top}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8
\end{array}\right)_{2 \times 4}=A
$$

Transposition is compatible with matrix addition and scalar multiplication.
2. If A and B are matrices of the same dimensions and c is a scalar, then:

$$
(A+B)^{T}=A^{T}+B^{T}
$$

and

$$
(c A)^{T}=c A^{T}
$$

3. When you transpose a product of matrices, it is the product of the transposes in the opposite order:

$$
\stackrel{p \times m}{\substack{\text { p } \\(A B)^{T}} \overbrace{B}^{T} A^{T}}
$$

[Check it] $A_{m \times n}, B_{n \times p}: A B$ is $m \times p$ matrix. $(A B)^{\top}$ is $p \times m$ matrix.

$$
B_{p \times \underline{n}}^{\top} A_{\underline{\underline{n} \times m}}^{\top} \quad=B^{\top} A^{\top} \text { is pam matrix. }
$$

4. Transposition commutes with inversion: $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
[Check it]] Let $X=\left(A^{-1}\right)^{\top}$. We only need to check

$$
\begin{gathered}
x A^{\top}=I, A^{\top} x=I . \\
x A^{\top}=\left(A^{-1}\right)^{\top} A^{\top}=\left(A A^{-1}\right)^{\top}=I^{\top}=I \\
\text { by } 3 .
\end{gathered}
$$

5. A matrix is said to be symmetric if it is equal to its own transpose.

$$
A=A^{T}
$$

Example 2. The matrix $A=\left(\begin{array}{lll}X & 2 & 3 \\ 2 & \mathbf{x} & 5 \\ 3 & 5 & \mathbf{C}\end{array}\right)$ is symmetric. $\left(A=A^{\top}\right)$
*By necessity, symmetric matrices must be square.

$$
\Leftrightarrow
$$

Fact 1. A symmetric matrix A is regular if and only if

$$
A=L D L^{T}=\left[\begin{array}{ll}
1 & 0 \\
\Delta & \ddots \\
\hline
\end{array}\right]\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \nabla_{1} \\
0 & \\
1
\end{array}\right]
$$

where L is a lower unitriangular matrix and D is a diagonal matrix with nonzero diagonal entries.

* If A is regular and $A=L U$, then $L U$ factorization is unique.

Moreover, its $L D V$ factorization is also unique. $(\stackrel{\text { Proof.] }}{\Rightarrow}) A$ is symmetric, regular. show $A=L D L^{\top}$.

Since A is regular, $A=L D V$

$$
\begin{aligned}
& A^{\top}=(L D V)^{\top} \underline{b}^{3} V^{\top} D^{\top} L^{\top}=\nabla^{\top} D L^{\top} \\
& { }^{\prime \prime}=E D \mathscr{U} \\
& \begin{array}{l}
\text { unitrany.br upper } \\
\text { unitriangula }
\end{array}
\end{aligned}
$$

Since $L D U$-factorization,

$$
\begin{aligned}
& V=L^{\top} \\
& L=V^{\top}
\end{aligned}
$$

Then $A=L D U=L D L^{\top}$

$$
\begin{aligned}
&(\Leftrightarrow \quad A=L D L^{\top} . \quad \text { Check } A=A^{\top} \\
& A^{\top}=\left(L D L^{\top}\right)^{\top} \\
&=\left(L^{\top}\right)^{\top} D^{\top} L^{\top} \\
&=L D L^{\top}=A .
\end{aligned}
$$

- For any nonsingular matrix A, we can use the decomposition $P A=\underline{L D V}$ to solve a linear system $A \mathbf{x}=\mathbf{b}$. First solve $L \mathbf{y}=P \mathbf{b}$ then $D \mathbf{z}=\mathbf{y}$, then $\underline{X}=\mathbf{z}$.
- Using the $L D V$ or $L D L^{T}$ decompositions is typically not any easier than using $L U$ for solving linear systems. But writing the symmetric version $L D L^{T}$ can have some advantages we will see later in the semester.

$$
\begin{aligned}
& P A x=\underline{P b} \Rightarrow \frac{D \sqrt{v x}}{y}=P b \\
& L y=P b \\
& D z=y \\
& V x=z
\end{aligned} ~\left\{\begin{array}{l}
L A+
\end{array}\right.
$$

1.8 General linear system

Consider a $m \times n$ matrix A. Here A may be a rectangular matrix or square matrix.

Let's look at the following different situations:

1. the number of equations $<$ the number of variables $m<n$.

Example 1. Solve the linear system:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -2 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{4}{4} \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -2 & -4 \\
4
\end{array}\right)
\end{aligned}
$$

$\xrightarrow{(2)+2(1)}\left(\begin{array}{ccc|c}1 & 2 & 3 & 4 \\ 0 & 2 & 2 & 12\end{array}\right)$
(2) $2 y+2 z=12$

$$
y=\frac{12-2 z}{2}=6-z
$$

(1)

$$
\begin{aligned}
x+2 & (6-z)+3 z=4 \\
x & =4-3 z-(12-2 z) \\
& =4-8-z \\
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
-8-z \\
6-z \\
z
\end{array}\right) \text { for any scalar } z
\end{aligned}
$$

infinitely many solution.

[^0]: ${ }^{1}$ Lower triangular: all entries above the diagonal are zero.
 Lower unitriangular: all entries above the diagonal are zero and entries on diagonal are all 1.

