Lecture 7: Quick review from previous lecture • The transpose of a matrix A^T . • If $A = A^T$, then we call the matrix A is **symmetric** • A is **nonsingular** $\Rightarrow PA = LDV$ • A **symmetric** matrix A is **regular** $\iff A = LDL^T$ Here P is a permutation matrix, L is lower unitriangular, D is diagonal, and V is upper unitriangular.

A non singular,

$$PA = L T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 1 \end{bmatrix}$$

 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, unique.

Today we will discuss

• Sec. 1.8 general system.

- Lecture will be recorded -

1.8 General linear system

Consider a $m \times n$ matrix A. Here A may be a rectangular matrix or square matrix.

Let's look at the following different situations:

1. the number of equations < the number of variables m < n:

Example 1. Solve the linear system:

2. the number of equations \geq the number of variables $m \geq n$:

x+2y=4 (line) **Example 2.** Solve the linear system: $A \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} \quad \text{NO subtron}'$ $\begin{pmatrix} 2 & 2 & 4 \\ 3 & 2 & 2 \\ 0 & 4 & -2 \end{pmatrix} \xrightarrow{(2)-3(1)} \begin{pmatrix} 1 & 2 & 4 \\ 0 & -4 & -10 \\ 0 & 0 & -4 & -10 \\ 0 & 0 & 0 & -2 \end{pmatrix}$ $\begin{array}{c|c} \hline 3 + \hline 2 \\ \hline \end{array} \begin{pmatrix} 1 & 2 & 4 \\ 0 & -4 & -10 \\ 0 & 0 & -12 \end{pmatrix}$ 69.M. (3) $0 \times + 0 = -12$, impossible. **Example 3.** Solve the linear system: on's one solutar $\begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 10 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 4 \\ 3 & 2 & 2 \\ 0 & 4 & 10 \end{pmatrix} \xrightarrow{\textcircled{2}-30} \begin{pmatrix} 1 & 2 & 4 \\ 0 & -4 & -10 \\ 0 & 4 & 10 \end{pmatrix} \cdot \text{basic variables}$ $\begin{array}{c} \hline 3 + \hline 2 \\ \hline 9 - \hline 9 \\ \hline 9 \\$ $2: -4y = -10, y = \frac{5}{2}$ $(D: X + 2(\frac{5}{2}) = 4, x = -1$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -i \\ 5/2 \end{pmatrix}$ MATH 4242-Week 3-2 Spring 2021

§ Row echelon form

• Gaussian elimination and pivoting (type 1 + type 2 row operations) can bring any matrix to the following form, which is called row echelon form:

- Once in this "**staircase**" shape, we can solve a linear system with this coefficient matrix from bottom to top, as we just did.
- The circled values are called the pivots.

Definition: The number of pivots is called the rank of the matrix A .		
rank(A) = number of its pivots		

Even if a matrix is brought to two different row echelon forms, **the ranks are the same**.

In other words, the rank depends only on the matrix not the particular choice of row operations we used to bring it to row echelon form.

Remark:

- 1. As we've seen, any square $(n \times n)$ matrix A can be brought to upper triangular form, which is a special case of row echelon form.

*Another way of saying this is that nonsingular matrices are "full rank", since they have the maximum allowed rank.

Example 4. Example in Lecture 3 again, we have

$$A = \underbrace{\begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 3 & -3 \\ -2 & -6 & -2 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}}_{nonsingular} U = \underbrace{\begin{pmatrix} 1 & 3 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 5 \end{pmatrix}}_{row echeln from the rank(A)}.$$

Some definitions:

- When solving a general linear system, the variables that correspond to columns not containing a pivot can be chosen arbitrarily. These are called **free variables**.
- The variables corresponding to columns that do contain a pivot are called **basic variables**.

*We solve for the **basic** variables in terms of the **free** variables.

Definition: We say that a system is **compatible** if the system has at least one solution.

* Note that the compatibility of a system $A\mathbf{x} = \mathbf{b}$ depends both on the coefficient matrix A and the right hand side \mathbf{b} .

Summary:

• A system may have 0, 1 or infinitely many solutions, but no other numbers. *So if there are two solutions, then there must be infinitely many solutions.

$$A = m \left[\frac{1}{2} \right] \longrightarrow m \left[\frac{1}{2} \right] n$$

• Let A be a $m \times n$ matrix. When the system $A\mathbf{x} = \mathbf{b}$ is compatible and $\operatorname{rank}(A) = \operatorname{number} \operatorname{of} \operatorname{variables} n$,

there is **exactly** 1 **solution**. For instance, see Example. 3 above.

• Let A be a $m \times n$ matrix.

	solutions of $A\mathbf{x} = \mathbf{b}$
$m \ge n$	$0, 1, \infty$
m < n	$0,\infty$

- Having a unique (exactly 1) solution is only possible if $\underline{m \ge n}$ (i.e. for square or tall coefficient matrices). See \mathbf{SX} 3,

- When n > m (i.e. the coefficient matrix is short and wide), there are either 0 or infinitely many solutions; see Example 1.

Recall that the rank r of a matrix is the number of rows that are not identically zero, after the matrix has been brought to row echelon form.

Fact 1. Let A be
$$m \times n$$
 matrix, then

$$0 \le r = \operatorname{rank}(A) \le \min\{m, n\}$$
S Homogeneous Systems $(A\mathbf{x} = \mathbf{0})$.
When the right hand side of a linear system is the **0** vector, we say the system is homogeneous. That is, a homogeneous system is of the form $A\mathbf{x} = \mathbf{0}$
• The vector $\mathbf{x} = \mathbf{0}$ is (ways) a solution to this system, since $A\mathbf{0} = \mathbf{0}$.
• If the matrix A is nonsingular, then $\mathbf{x} = \mathbf{0}$ is the (mique solution of $A\mathbf{x} = \mathbf{0}$.
• If the matrix A is nonsingular, then $\mathbf{x} = \mathbf{0}$ is the (mique solution of $A\mathbf{x} = \mathbf{0}$.
• Example 5. Solve the homogeneous system:

$$\begin{pmatrix} 1 & 3 & -2 \\ 2 & 2 & 4 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
Free variable = \mathbf{Z}
base \mathbf{Z} is a single system:

$$\begin{pmatrix} 1 & 3 & -2 \\ 2 & 2 & 4 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}
base \mathbf{Z} is a single system:

$$\begin{pmatrix} 1 & 3 & -2 \\ 2 & 2 & 4 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}
base \mathbf{Z} is a single system is $\mathbf{A} = \mathbf{Z}$

$$\begin{pmatrix} 1 & 3 & -2 \\ 2 & 2 & 4 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}
base \mathbf{Z} is a single system is $\mathbf{A} = \mathbf{Z}$

$$\begin{pmatrix} 1 & 3 & -2 \\ 2 & 2 & 4 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}
base \mathbf{Z} is a single system is $\mathbf{A} = \mathbf{Z}$

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & -3 & 2 \end{pmatrix} \begin{pmatrix} i & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 1 & 3 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Free variable = \mathbf{Z}

$$\begin{pmatrix} 2 & 3 & -2$$

Example 6.

of A.