Lecture 7: Quick review from previous lecture

- The transpose of a matrix A^{T}. $\quad A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], \quad A^{\top}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$.
- If $A=A^{T}$, then we call the matrix A is symmetric
- A is nonsingular $\Rightarrow P A=L D V$

$$
A=\left[\begin{array}{ll}
X & 3 \\
3 & 7
\end{array}\right]=A^{\top} .
$$

- A symmetric matrix A is regular $\Longleftrightarrow A=L D L^{T}$

Here P is a permutation matrix, \vec{L} is lower unitriangular, D is diagonal, and V is upper unitriangular.

A non singular,

$$
\begin{aligned}
P A=L U & =\left[\begin{array}{lll}
1 & 0 & 0 \\
\Delta & 1
\end{array}\right]\left[\begin{array}{l}
0
\end{array}\right] . \\
& =\left[\begin{array}{lll}
1 & 0 \\
\Delta & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & Q_{1} \\
0 & 1
\end{array}\right],
\end{aligned}
$$

Today we will discuss

- Sec. 1.8 general system.
- Lecture will be recorded -
1.8 General linear system

Consider a $m \times n$ matrix A. Here A may be a rectangular matrix or square matrix.

Let's look at the following different situations:

1. the number of equations $<$ the number of variables $m<n$:

Example 1. Solve the linear system:

$$
\begin{aligned}
& \text { he linear system: } \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -2 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{4}{4} \\
& x+2 y+3 z=4 \\
& -2 x-2 y-4 z=4
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
-2 & -2 & -4 & 4
\end{array}\right)
$$

$\xrightarrow{(2)+2(1)}\left(\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 2 & 2 & 12\end{array}\right)$
(2) $2 y+2 z=12$

$$
y=\frac{12-2 z}{2}=6-z
$$

(1)

$$
\begin{aligned}
& x+2(6-z)+3 z=4 \\
& x=4-3 z-(12-2 z) \\
& =-8-z
\end{aligned}
$$

$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-\delta-z \\ 6-z \\ z\end{array}\right)$. for any scalar z. I\ infinitely many solution.
2. the number of equations \geq the number of variables $m \geq n$:

Example 2. Solve the linear system:

$$
x+2 y=4 \text { (line })
$$

$$
\begin{aligned}
& A\left(\begin{array}{ll}
1 & 2 \\
3 & 2 \\
0 & 4
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right) \text { "NO suhation" } \\
& \left(\begin{array}{cc|c}
1 & 2 & 4 \\
(3) & 2 & 2 \\
0 & 4 & -2
\end{array}\right) \xrightarrow{(2)-3(1)}\left(\begin{array}{cc|c}
1 & 2 & 4 \\
0 & -4 & -10 \\
0 & 4 & -2
\end{array}\right) \\
& \xrightarrow{(3)+(2)}\left(\begin{array}{cc|c}
1 & 2 \\
0 & -4 & 4 \\
0 & 0 & -10 \\
-12
\end{array}\right)
\end{aligned}
$$

6qu. 3: $0 x+0 y=-12$, impossible.
Example 3. Solve the linear system:

$$
\begin{align*}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 2 \\
0 & 4
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
4 \\
2 \\
10
\end{array}\right) \\
& \left(\begin{array}{cc|c}
1 & 2 & 4 \\
3 & 2 & 2 \\
0 & 4 & 10
\end{array}\right) \xrightarrow{2}-3(1)\left(\begin{array}{cc|c}
1 & 2 & 4 \\
0 & -4 & -10 \\
0 & 4 & 10
\end{array}\right) \tag{2}\\
& \xrightarrow{(3)+(2)}\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & -4 & -10 \\
0 & 0 & 0
\end{array}\right) . \\
& \text { - basic variables } \\
& x, y \text {. } \\
& \text { - } \operatorname{rank} A=2
\end{align*}
$$

"Only che solutan"
(2): $-4 y=-10, y=5 / 2$.
(1): $x+2\left(\frac{5}{2}\right)=4 ., x=-1$

MATH 4242-Week 3-2

$$
\binom{x}{y}=\binom{-1}{5 / 2}
$$

§ Row echelon form

- Gaussian elimination and pivoting (type $1+$ type 2 row operations) can bring any matrix to the following form, which is called row echelon form:

- Once in this "staircase" shape, we can solve a linear system with this coefficient matrix from bottom to top, as we just did.
- The circled values are called the pivots.

Definition: The number of pivots is called the rank of the matrix A.

$$
\operatorname{rank}(A)=\text { number of its pivots }
$$

Even if a matrix is brought to two different row echelon forms, the ranks are the same.
In other words, the rank depends only on the matrix not he particular choice of row operations we used to bring it to row echelon form.

Remark:

1. As we've seen, any square $(n \times n)$ matrix A can be brought to upper triangular form, which is a special case of row echelon form.
2. When A is nonsingular, all the diagonal elements of the upper triangular

*Another way of saying this is that nonsingular matrices are "full rank", since they have the maximum allowed rank.

Example 4. Example in Lecture 3 again, we have
$A=\underbrace{\left(\begin{array}{rrrr}1 & 3 & 1 & 2 \\ 2 & 6 & 3 & -3 \\ -2 & -6 & -2 & 1 \\ 1 & 2 & 1 & 3\end{array}\right)}_{\text {nonsingular }} \underset{\text { type 1+type } 2}{\longrightarrow} U=\underbrace{\left(\text { full }_{\text {un }}\right.}_{\text {row echelon }}$ rank).

Some definitions:

- When solving a general linear system, the variables that correspond to columns not ontaining a pivot can be chosen arbitrarily. These are called free variables.
- The variables corresponding to columns that do contain a aivot are called basic variables.
${ }^{\text {*We solve }}$ for the basic variables in terms of the free variables.

In Example 1, we have seen that

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -2 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 3 \\
\hline 0 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Free variables:
 row echelon
basic variables: $x, y, \quad \operatorname{rank}(A)=2$

Definition: We say that a system is compatible if the system has at least one solution.

* Note that the compatibility of a system $\underset{\underline{A}}{\mathbf{x}}=\underline{\mathbf{b}}$ depends both on the coefficient matrix A and the right hand side \mathbf{b}.

Summary:

- A system may have 0,1 or infinitely many solutions, but no other numbers. *So if there are two ${ }^{2}$ solutions, then the must be infinitely many solutions.
- Let A be a $\left.m \times n\left[\begin{array}{l}\text { n }\end{array}\right] m^{\prime}\left[\frac{\square}{\frac{1}{0}}\right]\right\}_{n}$
- Let A be a $m \times n$ matrix. When the ${ }_{0}^{0} y s t g m a x=\mathbf{b}$ is compatible and

$$
\operatorname{rank}(A)=\text { number of variables } \mathrm{n},
$$

there is exactly 1 solution. For instance, see Example. 3 above.

- Let A be a $m \times n$ matrix.

	solutions of $A \mathbf{x}=\mathbf{b}$
$m \geq n$	$0,1, \infty$
$m<n$	$0, \infty$

- Having a unique exactly D solution is only possible if $m \geq n$ (ie. for square or tall coefficient matrices). See KX 3.
- When $n>m$ (i.e. the coefficient matrix is short and wide), there are either 0 or infinitely many solutions; see Example 1.

Recall that the rank r of a matrix is the number of rows that are not identically zero, after the matrix has been brought to row echelon form.

Fact 1. Let A be $m \times n$ matrix. then

$$
0 \leq r=\operatorname{rank}(A) \leq \min \{m, n\}
$$

humogene onus system.
\S Homogeneous Systems $(A x=0)$.
When the right hand side of a linear system is the $\mathbf{0}$ vector, we say the system is homogeneous. That is, a homogeneous system is of the form $A \mathbf{x}=\mathbf{0}$.

- The vector $\mathbf{x}=\mathbf{0}$ is a solution to this system, since $A \mathbf{0}=\mathbf{0}$.
- If the matrix A is nonsingular, then $\mathbf{x}=\mathbf{0}$ is the aniquelution of $A \mathbf{x}=\mathbf{0}$.

$$
\underline{x}=A^{-1} b=A^{-1} 0=0
$$

Example 5. Solve the homogeneous system:

$$
\begin{aligned}
& \left(\begin{array}{rrr}
1 & 3 & -2 \\
2 & 2 & 4 \\
-1 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 3 & -2 & 0 \\
2 & 2 & 4 & 0 \\
-1 & -3 & 2 & 0
\end{array}\right) \xrightarrow[(2)-2(1)]{(2)}\left(\begin{array}{ccc|c}
1 & 3 & -2 & 0 \\
0 & -4 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { Free variable }=z \\
& \text { base } \%=x, y \\
& \operatorname{rank} A=2 \\
& \text { (2): }-4 y+8 z=0 \text {. } \\
& y=2 z \text {. } \\
& \text { (1): } x+3(2 z)-2 z=0 \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-4 \\
2 \\
1
\end{array}\right) z, \\
& \text { teal } z \text {. } \\
& x=-4 z \text {. } \\
& \left(\forall_{\text {prim }} \boldsymbol{Z}_{2}\right)_{21}
\end{aligned}
$$

rank $A=3$
tree variables: y
Example 6. basic $\because: \omega, x, z$.

$$
\left(\begin{array}{rrr}
\sim \\
\left.\begin{array}{rrr}
1 & 3 & -2 \\
\hline 0 & 1 \\
\hline-2 & -4 & 3 \\
0 & 0 & 0 \\
-1
\end{array}\right)
\end{array}\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad(m<n) .\right.
$$

(3) $z=0$.
(2) $-2 x-4 y+0=0$.

$$
x=-2 y
$$

(1) $w+3(-2 y)-2 y+0=0$ $w=\delta y$.
$\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}8 \\ -2 \\ 1 \\ 0\end{array}\right) y, \forall y$.
Fact 2. Let $A=A_{m \times n}$ be the matrix of size $m \times n$.

(2) If $m<n$, the system $A \mathbf{x}=\mathbf{0}$ always has a nontrivial solution.
(3) If $m=n$, the system $A \mathbf{x}=\mathbf{0}$ has anontrivial solution $\Longleftrightarrow \mathrm{A}$ is singular,

Later, we will learn that the set of all \mathbf{x} satisfying $A \mathbf{x}=\mathbf{0}$ is called the kernel of A.

