Lecture 8: Quick review from previous lecture

• Gaussian elimination (with pivoting) can bring any matrix to the following form, which is called row echelon form:

*	*		*	*		*	*			*	*	*		*	
0	0	•••	0	*	•••	*	*			*	*	*		*	
0	0		0	0		0	*			*	*	*		*	
÷	:	۰.	÷	÷	۰.	÷	÷		۰.		÷	÷	۰.	÷	
0	0		0	0		0	0			0	*	*		*	
0	0		0	0		0	0			0	0	0		0	
:	:	·	÷	÷	۰.	÷	:	۰.	·	:	÷	÷	۰.	÷	
0	0		0	0	•••	0	0			0	0	0		0)

• The number of pivots is called the rank of the matrix A.

rank(A) = number of its pivots

- $n \times n$ matrix A is nonsingular if and only if rank(A) = n. (full rank)
- This system $A\mathbf{x} = \mathbf{0}$ is called homogeneous. $\mathbf{x} = \mathbf{0}$ is called homogeneous.

Today we will discuss

• Sec. 1.9 the determinant and Sec. 2.1 vector space

- Lecture will be recorded -

• HW 2 is due Today by 6 pm.

1.9 Determinants

Recall that we saw previously that a 2-by-2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is invertible $\Leftrightarrow \det(A) = ad - bc \neq 0 \quad \Leftrightarrow \quad A \text{ is nonsingular}$

Today we will now see how to generalize this to <u>all square matrices</u>. The key ingredient will be the permuted LU factorization that we have already seen. § Generalize to $n \times n$ matrix.

Indeed, Gaussian elimination with pivoting can turn
Any square matrix
$$A \Longrightarrow PA = LU = [A, A, A]$$

where P is a permutation matrix, L is lower unitriangular, and U is upper triangular. *This matrix U here could have "zero" diagonal entries.

• We have known that A is invertible precisely (by Gauss-Jordan elimination)

when $A \longrightarrow U = \begin{pmatrix} u_{11} & \dots & & \\ 0 & u_{22} & & \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & u_{nn} \end{pmatrix}$ with all u_{11}, \dots, u_{nn} are nonzero.

• Thus, we conclude that the *product* of all these numbers,

$$\det(U) = u_{11} \cdots u_{nn} \neq 0 \iff A \text{ is invertible (nonsingular)}$$

Definition: Motivated by this, we **define** det(A) as follows:

$$\det(A) = (-1)^{k} \det(U) = (-1)^{k} \prod_{i=1}^{n} u_{i,i}$$

where k denotes the number of row permutations we performed to bring A into upper triangular form.

Fact 1: We have

 $det(A) \neq 0 \iff A$ is nonsingular (invertible)

Example 1. Compute the determinant of

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 1 & -3 & 4 \\ 0 & 2 & -2 & 3 \\ 1 & 1 & -4 & -2 \end{pmatrix}$$

$$(2-2) \qquad (1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & (2 & -2 & 3 \\ 0 & (1) & -3 & -4 \end{pmatrix} (3-2) \qquad (1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & -2 & -4 \end{pmatrix}$$

$$(2-2) \qquad (2) & (2)$$

An immediate result:

Note that if $A_{n \times n}$ has a row consisting entirely of zeros, then det(A) = 0.

Example 2. Compute the determinant of

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \end{pmatrix}$$

§ Elementary Row Operations on the determinant of a $n \times n$ matrix A:

If B is a matrix obtained by adding a multiple of one row of A to another row of A. Then

$$\det(A) = \det(B).$$

Example 3.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, \quad B = \underbrace{\begin{pmatrix} a+5d & b+5e & c+5f \\ d & e & f \\ g & h & i \end{pmatrix}}_{row 1 of A+5(row 2 of A)}$$

If (B) is a matrix obtained by interchanging any two rows of A once, then

$$\det(B) = \bigcirc \det(A).$$

Example 4.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, \quad B = \underbrace{\begin{pmatrix} d & e & f \\ a & b & c \\ g & h & i \end{pmatrix}}_{q = h = i}$$

switch row 1 and row 2 of A

If B is a matrix obtained by multiplying a row of A by a nonzero scalar k, then det(B) = k det(A).

Example 5.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & 1 \end{pmatrix}^{2} B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 10 & 14 \\ 0 & 0 & 1 \end{pmatrix}$$

det $A = I \cdot 5 \cdot I$, $det B = I \cdot IO \cdot I$.
 $dor B = 2 der A$.

Then for scalar c, we can derive

Ann.

$$det(cA) = c^{n}det(A)$$

$$\widetilde{B} = 2A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 0 & 14 \\ 0 & 0 & 2 \end{pmatrix}$$

$$det \widetilde{B} = 2^{3} det A.$$

 \S The det operator behaves well with matrix multiplication, inversion, and transposition (but NOT addition!).

§ There is a formula for det(A).

Given a $n \times n$ matrix A, we denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting row *i* and column *j* by \tilde{A}_{ij}

Example 6.
$$A = \begin{pmatrix} 1 & 3 & 0 \\ -2 & -5 & -3 \\ 1 & 2 & 2 \end{pmatrix}$$
 we have $A = \begin{pmatrix} 3 & -2 & -3 \\ -2 & -5 & -3 \\ 1 & 2 & 2 \end{pmatrix}$, $\tilde{A}_{12} = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$, $\tilde{A}_{23} = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$

Let A be $n \times n$ matrix.

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(\tilde{A}_{ij})$$

Example 7. Compute the determinant of the following A:

MATH 4242-Week 3-3

Find