Due date:

Friday, $3 / 12$, due 6pm, submit through Canvas.

Instructions:

Students are encouraged to work together and discuss the homework problems, however each student must write up the solutions in their own words. Homework solutions should be well-explained, except True/False questions unless requested otherwise.

The format of HW is not restricted, but the PDF file is the preferred one.

Problem 1: Suppose A is a n-by- n matrix. Suppose that \mathbf{x} is a vector in \mathbb{R}^{n}. We define $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$, where $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$. Find the operator norm of $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -5\end{array}\right)$. That is, find $\|A\|_{2}=\max \left\{\|A \mathbf{u}\|_{2}:\|\mathbf{u}\|_{2}=1\right\}$.

Problems in [1]:

Pages 141-142, problems 3.2.16, 3.2.17 (only do 3.2 .16 for this weighted inner product), 3.2.27

Pages 147-148, problems 3.3.4
Pages 149-150, problems 3.3.20(a-d), 3.3.28(a-b)
Pages 155-155, problems 3.3.45(d)
Pages 159-161, problems 3.4.1(c,e), 3.4.6, 3.4.7(a)
Pages 165-166, problems 3.4.22(a,b) for (iv), 3.4.27

References

[1] Peter Olver and Chehrzad Shakiban, Applied Linear Algebra, 2 ${ }^{\text {nd }}$ Edition

