Due date:

Friday, $3 / 26$, due 6 pm , submit on-line through Canvas.

Instructions:

Students are encouraged to work together and discuss the homework problems, however each student must write up the solutions in their own words. Homework solutions should be well-explained.
The format of HW is not restricted, but the PDF file is the preferred one.
Problem 1: Let

$$
\mathbf{v}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \quad \text { and } \quad W=\operatorname{span}\left\{\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Decompose vector \mathbf{v} into $\mathbf{v}=\mathbf{w}+\mathbf{z}$, where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ with respect to the dot product. (Note that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are not orthogonal.)

Problems:

Problems in [1]:

Pages 203-204, problems 4.3.1(a)(d), 4.3.16(a), 4.3.20
Page 211, problems 4.3.27(c)
Pages 215-216, problems 4.4.3(c), 4.4.6 (Note that one needs to check that $(1,-1,2,5)^{T},(2,1,0,-1)^{T}$ are orthogonal with respect to this weighted inner product before we can apply the orthogonal projection formula)
Pages 220-221, problems 4.4.13(a,b,c), 4.4.19(a,b)

References

[1] Peter Olver and Chehrzad Shakiban, Applied Linear Algebra, 2 ${ }^{\text {nd }}$ Edition

