Appendix B. Criterion of Riemann-Stieltjes Integrability

This note is complementary to $[\mathrm{R}, \mathrm{Ch} .6]$ and $[\mathrm{T}$, Sec. 3.5]. The main result of this note is Theorem B.3, which provides the necessary and sufficient conditions for Riemann-Stieltjes integrability of f with respect to α in terms of sets of point of discontinuity of these functions. In an equivalent form, this result is contained in [H, Theorem C]. Here we give a more direct proof, which does not use explicitly the Lebesgue measure.

Let $\alpha=\alpha(x)$ be a monotonically non-decreasing function on a finite interval $[a, b]$, and let $f=f(x)$ be a bounded real function on $[a, b]$. For an arbitrary partition

$$
P:=\left\{a=x_{0} \leq x_{1} \leq \ldots \leq x_{n-1} \leq x_{n}=b\right\} \quad \text { of } \quad[a, b],
$$

we define the upper and lower sums as follows:

$$
\begin{equation*}
U(P, f, \alpha):=\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}, \quad L(P, f, \alpha):=\sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i}:=\sup _{\left[x_{i-1}, x_{i}\right]} f \geq m_{i}:=\inf _{\left[x_{i-1}, x_{i}\right]} f, \quad \Delta \alpha_{i}:=\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right) \quad \text { for } \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

For any two partitions P_{1} and P_{2}, their common refinement $P^{*}:=P_{1} \cup P_{2}$ satisfies (see [R, Theorem 6.4])

$$
\begin{equation*}
U\left(P_{1}, f, \alpha\right) \geq U\left(P^{*}, f, \alpha\right) \geq L\left(P^{*}, f, \alpha\right) \geq L\left(P_{2}, f, \alpha\right) \tag{3}
\end{equation*}
$$

Therefore, we always have

$$
\begin{equation*}
\inf _{P} U(P, f, \alpha) \geq \sup _{P} L(P, f, \alpha) . \tag{4}
\end{equation*}
$$

Definition B.1. The function f is Riemann-Stieltjes integrable with respect to α on $[a, b]$ if both sides of (4) are equal. In this case, we write $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and define the RiemannStieltjes integral

$$
\begin{equation*}
\int_{a}^{b} f d \alpha:=\inf _{P} U(P, f, \alpha)=\sup _{P} L(P, f, \alpha) \tag{5}
\end{equation*}
$$

Theorem B. $2([\mathrm{R}]$, Theorem 6.6). $f \in \mathcal{R}(\alpha)$ on $[a, b]$ if and only if for every $\varepsilon>0$ there exists a partition P such that

$$
\begin{equation*}
U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon \tag{6}
\end{equation*}
$$

Proof. For every $\varepsilon>0$ there are partitions P_{1} and P_{2} such that

$$
U\left(P_{1}, f, \alpha\right)<\inf _{P} U(P, f, \alpha)+\frac{\varepsilon}{2}, \quad L\left(P_{2}, f, \alpha\right)>\sup _{P} U(P, f, \alpha)-\frac{\varepsilon}{2} .
$$

If $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then we have equality in (4), which implies

$$
0 \leq U\left(P_{1}, f, \alpha\right)-L\left(P_{2}, f, \alpha\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

and (6) follows from (3) with $P=P^{*}:=P_{1} \cup P_{2}$.
On the other hand, if we have (6), then the difference between inf and sup in (4) is less than ε. Since $\varepsilon>0$ is arbitrary, we must have the equality, i.e. $f \in \mathcal{R}(\alpha)$ on $[a, b]$.

Further, since $\alpha(x)$ is non-decreasing on $[a, b]$, there are one-sided limits

$$
\alpha(p-):=\lim _{y \rightarrow p-} \alpha(y), \quad a<p \leq b ; \quad \alpha(p+):=\lim _{y \rightarrow p+} \alpha(y), \quad a \leq p<b
$$

and $\alpha(p-) \leq \alpha(p) \leq \alpha(p+)$.
Theorem B.3. Let f be a bounded real function on $[a, b]$. Then $f \in \mathcal{R}(\alpha)$ on $[a, b]$ if and only if f and α satisfy both properties (I) and (II) below.
(I) (i) If $\alpha(p-)<\alpha(p), a<p \leq b$, then $\exists f(p-)=f(p)$.
(ii) If $\alpha(p)<\alpha(p+), a \leq p<b$, then $\exists f(p+)=f(p)$.
(II) Let S_{f} and S_{α} denote the sets of points of discontinuity of f and α correspondingly. Then for every $\varepsilon>0$ there exists a (finite or countable) sequence of intervals $\left(a_{j}, b_{j}\right), j \geq 1$, such that

$$
\begin{equation*}
S:=\left(S_{f} \backslash S_{\alpha}\right) \subset \bigcup_{j}\left(a_{j}, b_{j}\right), \quad \text { and } \quad \sum_{j}\left(\alpha\left(b_{j}\right)-\alpha\left(a_{j}\right)\right)<\varepsilon \tag{7}
\end{equation*}
$$

Here the intervals $\left(a_{j}, b_{j}\right)$ are not necessarily contained in $[a, b]$. We extend $f \equiv f(a), \alpha \equiv \alpha(a)$ on $(-\infty, a)$ and $f \equiv f(b), \alpha \equiv \alpha(b)$ on $(b,+\infty)$, so that the last expression, and also the expression in (9) below, are well defined in any case.

Remark B.4. The property (I) simply says that if $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then f and α cannot be both left-discontinuous, or both right-discontinuous at same point. Of course, this property is redundant if α is continuous on $[a, b]$. By change of variable ($[\mathrm{R}$, Theorem 6.19]), this case can be reduced to $\alpha(x) \equiv x$. In this particular case, our theorem is contained in [T, Theorem 3.5.6].
Definition B.5. The oscillation of f on a set A,

$$
\begin{equation*}
\operatorname{osc}_{A} f:=\sup _{A} f-\inf _{A} f=\sup _{x, y \in A}|f(x)-f(y)| . \tag{8}
\end{equation*}
$$

If f is defined on $[a, b]$, then the oscillation of f at a point $p \in[a, b]$,

$$
\begin{equation*}
\omega_{f}(p):=\lim _{h \rightarrow 0+} \underset{[p-h, p+h]}{\mathrm{osc}} f . \tag{9}
\end{equation*}
$$

Lemma B.6. (i) f is continuous at p if and only if $\omega_{f}(p)=0$;
(ii) $f(p-)=f(p)$ if and only if $\underset{[p-h, p]}{\text { osc }} f \rightarrow 0$ as $h \rightarrow 0+$;
(iii) $f(p+)=f(p)$ if and only if $\underset{[p, p+h]}{\mathrm{Osc}} f \rightarrow 0$ as $h \rightarrow 0+$.

We skip the proof, because it is very elementary (see [T, Theorem 3.5.2]).
Lemma B.7. If $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then f and α satisfy the properties (I) in Theorem B.3.
Proof. Let p be a point such that $\alpha(p-)<\alpha(p), a<p \leq b$. By Theorem B.2, for every $\varepsilon>0$ there is a partition $P:=\left\{a=x_{0} \leq x_{1} \leq \ldots \leq x_{n}=b\right\}$ (depending on α) such that

$$
\begin{equation*}
U(P, f, \alpha)-L(P, f, \alpha)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \cdot \Delta \alpha_{i}<\varepsilon \tag{10}
\end{equation*}
$$

Next, for small $h \in(0, p-a)$, the interval $(p-h, p)$ does not contain point $x_{i} \in P$. From (3) (with $P_{1}=P_{2}=P$) it follows that the refined partition $P^{*}:=P \cup\{p-h, p\}$ satisfies

$$
U\left(P^{*}, f, \alpha\right)-L\left(P^{*}, f, \alpha\right) \underset{\mathrm{B}-2}{\leq} U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon
$$

Therefore, replacing P by P^{*} if necessary, we can assume that $p-h, p \in P$, i.e.

$$
p-h=x_{i_{0}-1}<p=x_{i_{0}} \quad \text { for some } \quad i_{0} \in\{1,2, \ldots, n\} .
$$

Then from (10) it follows

$$
\underset{[p-h, p]}{\mathrm{OSC}} f \cdot \Delta \alpha_{i_{0}}=\left(M_{i_{0}}-m_{i_{0}}\right) \cdot \Delta \alpha_{i_{0}}<\varepsilon .
$$

Since $\Delta \alpha_{i_{0}}=\alpha(p)-\alpha(p-h) \geq \alpha(p)-\alpha(p-)>0$, and $\varepsilon>0$ can be chosen arbitrarily small, we conclude that $\underset{[p-h, p]}{\mathrm{OSC}} f \rightarrow 0$ as $h \rightarrow 0+$. By Lemma B.6(ii), we have $f(p-)=f(p)$.

The proof of part (i) in (I) is complete. Part (ii) can be proved quite similarly.
Lemma B.8. If $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then f and α satisfy the property (II) in Theorem B.3.
Proof. By Lemma B.6(i), the set of points of discontinuity of f,

$$
\begin{equation*}
S_{f}=\left\{p \in[a, b]: \omega_{f}(p)>0\right\}=\bigcup_{k=1}^{\infty} F_{k}, \quad \text { where } \quad F_{k}:=\left\{p \in[a, b]: \omega_{f}(p) \geq 2^{-k}\right\} \tag{11}
\end{equation*}
$$

Fix $\varepsilon>0$. By Theorem B.2, for every $k=1,2, \ldots$, there exists a partition $P:=\left\{a=x_{0} \leq\right.$ $\left.x_{1} \leq \ldots \leq x_{n}=b\right\}$ (depending on k) such that

$$
\begin{equation*}
U(P, f, \alpha)-L(P, f, \alpha)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \cdot \Delta \alpha_{i}<\varepsilon_{k}:=4^{-k} \varepsilon . \tag{12}
\end{equation*}
$$

Note that if $p \in F_{k} \backslash P$, then for some $i \in\{1,2, \ldots, n\}$ we have $p \in\left(x_{i-1}, x_{i}\right)$, and $M_{i}-m_{i} \geq$ $\omega_{f}(p) \geq 2^{-k}$. Let A_{k} denote the set of all such indices i. Then

$$
\begin{equation*}
\left(F_{k} \backslash P\right) \subset \bigcup_{i \in A_{k}}\left(x_{i}-x_{i-1}\right), \quad \text { and } \quad \sum_{i \in A_{k}} \Delta \alpha_{i} \leq 2^{k} \sum_{i \in A_{k}}\left(M_{i}-m_{i}\right) \cdot \Delta \alpha_{i}<2^{-k} \varepsilon . \tag{13}
\end{equation*}
$$

Further, $F_{k} \backslash S_{\alpha}$ is contained in $\left(F_{k} \backslash P\right) \cup\left(P \backslash S_{\alpha}\right)$. Since $\alpha(x)$ is continuous at every point $p \in P \backslash S_{\alpha}$, one can cover such point by intervals ($p-h, p+h$) with arbitrarily small $\alpha(p+h)-\alpha(p-h)$. Together with $\left(x_{i-1}, x_{i}\right), i \in A_{k}$, these intervals compose a finite family of intervals $\left(a_{k, i}, b_{k, i}\right)$ such that

$$
\left(F_{k} \backslash S_{\alpha}\right) \subset \bigcup_{i}\left(a_{k, i}, b_{k, i}\right), \quad \text { and } \quad \sum_{i}\left(\alpha\left(b_{k, i}\right)-\alpha\left(a_{k, i}\right)\right)<2^{-k} \varepsilon
$$

Finally, by virtue of (11),

$$
\left(S_{f} \backslash S_{\alpha}\right)=\bigcup_{k=1}^{\infty}\left(F_{k} \backslash S_{\alpha}\right) \subset \bigcup_{k=1}^{\infty} \bigcup_{i}\left(a_{k, i}, b_{k, i}\right), \quad \text { and } \quad \sum_{k=1}^{\infty} \sum_{i}\left(\alpha\left(b_{k, i}\right)-\alpha\left(a_{k, i}\right)\right)<\sum_{k=1}^{\infty} 2^{-k} \varepsilon=\varepsilon .
$$

Since the countable set of intervals $\left\{\left(a_{k, i}, b_{k, i}\right)\right\}$ can be renumbered as $\left\{\left(a_{j}, b_{j}\right)\right\}$, we get the desired property (7).

The following lemma, together with the previous Lemmas B. 7 and B.8, completes the proof of Theorem B.3.

Lemma B.9. Let f be a bounded function on $[a, b]$ satisfying the properties (I) and (II) in Theorem B.3. Then $f \in \mathcal{R}(\alpha)$ on $[a, b]$.

Proof. Step 1. We have $|f| \leq M=$ const $<\infty$ on $[a, b]$. By Theorem B.2, it suffices to show that for an arbitrary $\varepsilon>0$, there exists a partition $P:=\left\{a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b\right\}$ of $[a, b]$ satisfying the inequality (6) for given f and α. This inequality can be written in the form

$$
\begin{equation*}
U(P, f, \alpha)-L(P, f, \alpha)=\sum_{i=1}^{n} \underset{I_{i}}{\operatorname{osc}} f \cdot \underset{I_{i}}{\operatorname{OSc}} \alpha<\varepsilon, \quad \text { where } \quad I_{i}:=\left[x_{i-1}, x_{i}\right] . \tag{14}
\end{equation*}
$$

Step 2. Fix a constant $\varepsilon_{1}>0$. Note that since $\alpha(x)$ is a monotone function, its set of points of discontinuity S_{α} is at most countable: $S_{\alpha}:=\left\{c_{1}, c_{2}, \ldots\right\}$. From the assumption (I) in Theorem B. 3 it follows that for each $j=1,2, \ldots$, one can choose a small constant $h_{j}>0$ such that

$$
\begin{equation*}
\underset{I_{1, j}^{-}}{\operatorname{osc}} f \cdot \underset{I_{1, j}^{-}}{\operatorname{osc}} \alpha<2^{-j} \varepsilon_{1}, \quad \underset{I_{1, j}^{+}}{\operatorname{osc}} f \cdot \underset{I_{1, j}^{+}}{\operatorname{osc}} \alpha<2^{-j} \varepsilon_{1}, \quad \text { for } \quad j=1,2, \ldots, \tag{15}
\end{equation*}
$$

where $I_{1, j}^{-}:=\left[c_{j}-h_{j}, c_{j}\right], I_{1, j}^{+}:=\left[c_{j}, c_{j}+h_{j}\right]$. Obviously, we also have

$$
\begin{equation*}
S_{\alpha}:=\left\{c_{1}, c_{2}, \ldots\right\} \subset V_{1}:=\bigcup_{j \geq 1} I_{1, j}, \quad \text { where } \quad I_{1, j}:=\left(a_{1, j}, b_{1, j}\right):=\left(c_{j}-h_{j}, c_{j}+h_{j}\right) . \tag{16}
\end{equation*}
$$

Step 3. Based on the constant $\varepsilon_{1}>0$, define the set

$$
\begin{equation*}
F:=\left\{p \in[a, b]: \omega_{f}(p) \geq \varepsilon_{1}>0\right\} . \tag{17}
\end{equation*}
$$

We claim (as in [T, Lemma 3.5.4]) that F is compact. Indeed, if $p_{j} \in F$ and $p_{j} \rightarrow p_{0} \in[a, b]$ as $j \rightarrow \infty$, then for an arbitrary $h>0$ there is j such that $\left|p_{j}-p_{0}\right|<h / 2$. For such j, we have $\left(p_{j}-h / 2, p_{j}+h / 2\right) \subset\left(p_{0}-h, p_{0}+h\right)$, hence by (8) and (9), the oscillation of f,

$$
\underset{\left[p_{0}-h, p_{0}+h\right]}{\operatorname{OSC}} f \geq \underset{\left[p_{j}-h / 2, p_{j}+h / 2\right]}{\operatorname{osc}} f \geq \omega_{f}\left(p_{j}\right) \geq \varepsilon_{1},
$$

and

$$
\omega_{f}\left(p_{0}\right):=\lim _{h \rightarrow 0+}^{\operatorname{OSC}} f \geq \varepsilon_{1}>0, \quad \text { i.e. } \quad p_{0} \in F .
$$

This argument proves the compactness of F.
Step 4. Further, note that $F \subset S_{f}$ - the set of points of discontinuity of f. Therefore, by our assumption (II), for the given constant $\varepsilon_{1}>0$, there exists a sequence of intervals $I_{2, j}:=\left(a_{2, j}, b_{2, j}\right)$ such that

$$
\begin{equation*}
\left(F \backslash S_{\alpha}\right) \subset\left(S_{f} \backslash S_{\alpha}\right) \subset V_{2}:=\bigcup_{j} I_{2, j}, \quad \text { and } \quad \sum_{j}\left(\alpha\left(b_{2, j}\right)-\alpha\left(a_{2, j}\right)\right)<\varepsilon_{1} . \tag{18}
\end{equation*}
$$

Step 5. From (16) and (18) it follows $F \subset\left(V_{1} \cup V_{2}\right)$, so that the compact set F is covered by the union of two families of open intervals $\left\{I_{1, j}\right\}$ and $\left\{I_{2, j}\right\}$. Therefore, one can choose finite subfamilies $\left\{I_{1, j}^{\prime}\right\} \subset\left\{I_{1, j}\right\}$ and $\left\{I_{2, j}^{\prime}\right\} \subset\left\{I_{2, j}\right\}$ such that

$$
\begin{equation*}
F \subset\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right), \quad \text { where } \quad V_{1}^{\prime}:=\bigcup_{j} I_{1, j}^{\prime}, \quad V_{2}^{\prime}:=\bigcup_{j} I_{2, j}^{\prime} \tag{19}
\end{equation*}
$$

Consider another compact set $F^{\prime}:=[a, b] \backslash\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right)$. Since F^{\prime} does not intersect F, we have $\omega_{f}(p)<\varepsilon_{1}$ for every $p \in F^{\prime}$. By definition of $\omega_{f}(p)$ in (9),

$$
\begin{equation*}
\underset{[p-h, p+h]}{\mathrm{OSC}} f<\varepsilon_{1} \quad \text { for every } \quad p \in F^{\prime} \quad \text { with some } \quad h=h(p)>0 . \tag{20}
\end{equation*}
$$

The family of the corresponding open intervals $\left\{(p-h, p+h), p \in F^{\prime}\right\}$ covers the compact F^{\prime}. Therefore, this family contains a finite subfamily $\left\{I_{3, j}^{\prime}:=\left(a_{3, j}, b_{3, j}\right)\right\}$ such that

$$
\begin{equation*}
F^{\prime} \subset V_{3}^{\prime}:=\bigcup_{j} I_{3, j}^{\prime}, \quad \text { and } \quad \underset{\left[a_{3, j}, b_{3, j}\right]}{\operatorname{OSc}} f<\varepsilon_{1} \quad \text { for each } \quad j \tag{21}
\end{equation*}
$$

Step 6. It is easy to see that (19) and (21) imply $[a, b] \subset\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime}\right)$, so that $[a, b]$ is covered by the union of three finite families of open intervals $\left\{I_{1, j}^{\prime}\right\},\left\{I_{2, j}^{\prime}\right\}$, and $\left\{I_{3, j}^{\prime}\right\}$. Let $P:=\left\{a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b\right\}$ be a partition of $[a, b]$, which includes the point a, b, all the endpoints of intervals $I_{1, j}^{\prime}, I_{2, j}^{\prime}, I_{3, j}^{\prime}$, and also the centers c_{j} of the intervals $I_{1, j}^{\prime}:=\left(c_{j}-h_{j}, c_{j}+h_{j}\right)$, which belong to (a, b).

Denote $I_{i}:=\left[x_{i-1}, x_{i}\right]$ for $i=1,2, \ldots, n$. Note that I_{i} are closed intervals, whereas $I_{1, j}^{\prime}, I_{2, j}^{\prime}, I_{3, j}^{\prime}$ are open. However, all the estimates (15), (18), and (21), hold true for closed intervals.

Let A_{1} denote the set of all indices $i \in\{1,2, \ldots$,$\} such that I_{i} \subset V_{1}^{\prime}, A_{2}$ - the set of all $i \notin A_{1}$ such that $I_{2} \subset V_{2}^{\prime}$, and A_{3} - the set of all the remaining i, for which we automatically have $I_{i} \subset V_{3}^{\prime}$, because $[a, b] \subset\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime}\right)$.

For each $i \in A_{1}$, we have either $I_{i} \subset I_{1, j}^{-}$or $I_{i} \subset I_{1, j}^{+}$for some j, hence by virtue of (15),

$$
\begin{equation*}
\sum_{i \in A_{1}} \underset{I_{i}}{\operatorname{osc}} f \cdot \underset{I_{i}}{\operatorname{osc}} \alpha<2 \sum_{j=1}^{\infty} 2^{-j} \varepsilon_{1}=2 \varepsilon_{1} . \tag{22}
\end{equation*}
$$

Similarly, since $|f| \leq M$, we have osc $f \leq 2 M$, and the last inequality in (18) implies

$$
\begin{equation*}
\sum_{i \in A_{2}} \operatorname{osc} f \cdot \underset{I_{i}}{\operatorname{osc}} \alpha \leq 2 M \sum_{i \in A_{2}} \operatorname{oscc} \alpha<2 M \cdot \varepsilon_{1} \tag{23}
\end{equation*}
$$

Finally, from (21) and monotonicity of α it follows

$$
\begin{equation*}
\sum_{i \in A_{3}} \operatorname{\operatorname {osc}} f \cdot \underset{I_{i}}{\operatorname{osc}} \alpha \leq \varepsilon_{1} \sum_{i \in A_{3}} \underset{I_{i}}{\operatorname{osc}} \alpha \leq(\alpha(b)-\alpha(a)) \cdot \varepsilon_{1} . \tag{24}
\end{equation*}
$$

Since $A_{1} \cup A_{2} \cup A_{3}=\{1,2, \ldots, n\}$, the estimates (22)-(24) yield

$$
\sum_{i=1}^{n} \underset{I_{i}}{\operatorname{osc}} f \cdot \underset{I_{i}}{\operatorname{osc}} \alpha \leq(2+2 M+\alpha(b)-\alpha(a)) \cdot \varepsilon_{1}<\varepsilon
$$

provided $0<\varepsilon_{1}<(2+2 M+\alpha(b)-\alpha(a))^{-1} \varepsilon$. Thus we have the desired estimate (14) and lemma is proved.

References

[H] H. J. Ter Horst, Riemann-Stieltjes and Lebesgue-Stieltjes Integrability, Amer. Math. Monthly, vol. 91, 1984, pp. 551-559.
[R] W. Rudin, Principles of Mathematical Analysis, 3rd edition.
[T] W. F. Trench, Introduction to real analysis.

