Appendix B. Criterion of Riemann-Stieltjes Integrability

This note is complementary to [R, Ch. 6] and [T, Sec. 3.5]. The main result of this note is Theorem B.3, which provides the necessary and sufficient conditions for Riemann-Stieltjes integrability of f with respect to α in terms of sets of point of discontinuity of these functions. In an equivalent form, this result is contained in [H, Theorem C]. Here we give a more direct proof, which does not use explicitly the Lebesgue measure.

Let $\alpha = \alpha(x)$ be a monotonically non-decreasing function on a finite interval [a, b], and let f = f(x) be a bounded real function on [a, b]. For an arbitrary **partition**

$$P := \{a = x_0 \le x_1 \le \dots \le x_{n-1} \le x_n = b\} \quad \text{of} \quad [a, b],$$

we define the **upper** and **lower sums** as follows:

(1)
$$U(P, f, \alpha) := \sum_{i=1}^{n} M_i \Delta \alpha_i, \qquad L(P, f, \alpha) := \sum_{i=1}^{n} m_i \Delta \alpha_i,$$

where

(2)
$$M_i := \sup_{[x_{i-1}, x_i]} f \ge m_i := \inf_{[x_{i-1}, x_i]} f, \quad \Delta \alpha_i := \alpha(x_i) - \alpha(x_{i-1}) \text{ for } i = 1, 2, \dots, n.$$

For any two partitions P_1 and P_2 , their **common refinement** $P^* := P_1 \cup P_2$ satisfies (see [R, Theorem 6.4])

(3)
$$U(P_1, f, \alpha) \ge U(P^*, f, \alpha) \ge L(P^*, f, \alpha) \ge L(P_2, f, \alpha).$$

Therefore, we always have

(4)
$$\inf_{P} U(P, f, \alpha) \ge \sup_{P} L(P, f, \alpha).$$

Definition B.1. The function f is **Riemann-Stieltjes integrable** with respect to α on [a, b] if both sides of (4) are equal. In this case, we write $f \in \mathcal{R}(\alpha)$ on [a, b] and define the **Riemann-Stieltjes integral**

(5)
$$\int_{a}^{b} f \, d\alpha := \inf_{P} U(P, f, \alpha) = \sup_{P} L(P, f, \alpha)$$

Theorem B.2 ([R], Theorem 6.6). $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that

(6)
$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Proof. For every $\varepsilon > 0$ there are partitions P_1 and P_2 such that

$$U(P_1, f, \alpha) < \inf_P U(P, f, \alpha) + \frac{\varepsilon}{2}, \qquad L(P_2, f, \alpha) > \sup_P U(P, f, \alpha) - \frac{\varepsilon}{2}$$

If $f \in \mathcal{R}(\alpha)$ on [a, b], then we have equality in (4), which implies

$$0 \le U(P_1, f, \alpha) - L(P_2, f, \alpha) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

and (6) follows from (3) with $P = P^* := P_1 \cup P_2$.

On the other hand, if we have (6), then the difference between inf and sup in (4) is less than ε . Since $\varepsilon > 0$ is arbitrary, we must have the equality, i.e. $f \in \mathcal{R}(\alpha)$ on [a, b].

Further, since $\alpha(x)$ is non-decreasing on [a, b], there are one-sided limits

 $\alpha(p-) := \lim_{y \to p-} \alpha(y), \quad a$

and $\alpha(p-) \leq \alpha(p) \leq \alpha(p+)$.

Theorem B.3. Let f be a bounded real function on [a, b]. Then $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if f and α satisfy both properties (I) and (II) below.

(I) (i) If $\alpha(p-) < \alpha(p)$, $a , then <math>\exists f(p-) = f(p)$. (ii) If $\alpha(p) < \alpha(p+)$, $a \le p < b$, then $\exists f(p+) = f(p)$.

(II) Let S_f and S_{α} denote the sets of points of discontinuity of f and α correspondingly. Then for every $\varepsilon > 0$ there exists a (finite or countable) sequence of intervals $(a_j, b_j), j \ge 1$, such that

(7)
$$S := (S_f \setminus S_\alpha) \subset \bigcup_j (a_j, b_j), \quad and \quad \sum_j (\alpha(b_j) - \alpha(a_j)) < \varepsilon.$$

Here the intervals (a_j, b_j) are not necessarily contained in [a, b]. We extend $f \equiv f(a)$, $\alpha \equiv \alpha(a)$ on $(-\infty, a)$ and $f \equiv f(b)$, $\alpha \equiv \alpha(b)$ on $(b, +\infty)$, so that the last expression, and also the expression in (9) below, are well defined in any case.

Remark B.4. The property (I) simply says that if $f \in \mathcal{R}(\alpha)$ on [a, b], then f and α cannot be both left-discontinuous, or both right-discontinuous at same point. Of course, this property is redundant if α is continuous on [a, b]. By change of variable ([R, Theorem 6.19]), this case can be reduced to $\alpha(x) \equiv x$. In this particular case, our theorem is contained in [T, Theorem 3.5.6].

Definition B.5. The oscillation of f on a set A,

(8)
$$\operatorname{osc}_{A} f := \sup_{A} f - \inf_{A} f = \sup_{x,y \in A} |f(x) - f(y)|.$$

If f is defined on [a, b], then the **oscillation** of f at a point $p \in [a, b]$,

(9)
$$\omega_f(p) := \lim_{h \to 0+} \operatorname{osc}_{[p-h,p+h]} f$$

Lemma B.6. (i) f is continuous at p if and only if $\omega_f(p) = 0$; (ii) f(p-) = f(p) if and only if $\underset{[p-h,p]}{\operatorname{osc}} f \to 0$ as $h \to 0+$; (iii) f(p+) = f(p) if and only if $\underset{[p,p+h]}{\operatorname{osc}} f \to 0$ as $h \to 0+$.

We skip the proof, because it is very elementary (see [T, Theorem 3.5.2]).

Lemma B.7. If $f \in \mathcal{R}(\alpha)$ on [a, b], then f and α satisfy the properties (I) in Theorem B.3.

Proof. Let p be a point such that $\alpha(p-) < \alpha(p)$, $a . By Theorem B.2, for every <math>\varepsilon > 0$ there is a partition $P := \{a = x_0 \le x_1 \le \ldots \le x_n = b\}$ (depending on α) such that

(10)
$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \cdot \Delta \alpha_i < \varepsilon.$$

Next, for small $h \in (0, p - a)$, the interval (p - h, p) does not contain point $x_i \in P$. From (3) (with $P_1 = P_2 = P$) it follows that the refined partition $P^* := P \cup \{p - h, p\}$ satisfies

$$U(P^*, f, \alpha) - L(P^*, f, \alpha) \leq U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

B-2

Therefore, replacing P by P^* if necessary, we can assume that $p - h, p \in P$, i.e.

$$p - h = x_{i_0 - 1} for some $i_0 \in \{1, 2, \dots, n\}.$$$

Then from (10) it follows

$$\underset{[p-h,p]}{\operatorname{osc}} f \cdot \Delta \alpha_{i_0} = \left(M_{i_0} - m_{i_0} \right) \cdot \Delta \alpha_{i_0} < \varepsilon.$$

Since $\Delta \alpha_{i_0} = \alpha(p) - \alpha(p-h) \ge \alpha(p) - \alpha(p-) > 0$, and $\varepsilon > 0$ can be chosen arbitrarily small, we conclude that $\underset{[p-h,p]}{\text{osc}} f \to 0$ as $h \to 0+$. By Lemma B.6(ii), we have f(p-) = f(p).

The proof of part (i) in (I) is complete. Part (ii) can be proved quite similarly.

Lemma B.8. If $f \in \mathcal{R}(\alpha)$ on [a, b], then f and α satisfy the property (II) in Theorem B.3. Proof. By Lemma B.6(i), the set of points of discontinuity of f,

(11)
$$S_f = \{ p \in [a,b] : \omega_f(p) > 0 \} = \bigcup_{k=1}^{\infty} F_k, \text{ where } F_k := \{ p \in [a,b] : \omega_f(p) \ge 2^{-k} \}.$$

Fix $\varepsilon > 0$. By Theorem B.2, for every k = 1, 2, ..., there exists a partition $P := \{a = x_0 \le x_1 \le ... \le x_n = b\}$ (depending on k) such that

(12)
$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \cdot \Delta \alpha_i < \varepsilon_k := 4^{-k} \varepsilon.$$

Note that if $p \in F_k \setminus P$, then for some $i \in \{1, 2, ..., n\}$ we have $p \in (x_{i-1}, x_i)$, and $M_i - m_i \ge \omega_f(p) \ge 2^{-k}$. Let A_k denote the set of all such indices i. Then

(13)
$$(F_k \setminus P) \subset \bigcup_{i \in A_k} (x_i - x_{i-1}), \text{ and } \sum_{i \in A_k} \Delta \alpha_i \leq 2^k \sum_{i \in A_k} (M_i - m_i) \cdot \Delta \alpha_i < 2^{-k} \varepsilon.$$

Further, $F_k \setminus S_\alpha$ is contained in $(F_k \setminus P) \cup (P \setminus S_\alpha)$. Since $\alpha(x)$ is continuous at every point $p \in P \setminus S_\alpha$, one can cover such point by intervals (p - h, p + h) with arbitrarily small $\alpha(p+h) - \alpha(p-h)$. Together with $(x_{i-1}, x_i), i \in A_k$, these intervals compose a finite family of intervals $(a_{k,i}, b_{k,i})$ such that

$$(F_k \setminus S_\alpha) \subset \bigcup_i (a_{k,i}, b_{k,i}), \text{ and } \sum_i (\alpha(b_{k,i}) - \alpha(a_{k,i})) < 2^{-k} \varepsilon$$

Finally, by virtue of (11),

$$(S_f \setminus S_\alpha) = \bigcup_{k=1}^{\infty} (F_k \setminus S_\alpha) \subset \bigcup_{k=1}^{\infty} \bigcup_i (a_{k,i}, b_{k,i}), \text{ and } \sum_{k=1}^{\infty} \sum_i \left(\alpha(b_{k,i}) - \alpha(a_{k,i}) \right) < \sum_{k=1}^{\infty} 2^{-k} \varepsilon = \varepsilon.$$

Since the countable set of intervals $\{(a_{k,i}, b_{k,i})\}$ can be renumbered as $\{(a_j, b_j)\}$, we get the desired property (7).

The following lemma, together with the previous Lemmas B.7 and B.8, completes the proof of Theorem B.3.

Lemma B.9. Let f be a bounded function on [a, b] satisfying the properties (I) and (II) in Theorem B.3. Then $f \in \mathcal{R}(\alpha)$ on [a, b].

Proof. Step 1. We have $|f| \leq M = \text{const} < \infty$ on [a, b]. By Theorem B.2, it suffices to show that for an arbitrary $\varepsilon > 0$, there exists a partition $P := \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ of [a, b] satisfying the inequality (6) for given f and α . This inequality can be written in the form

(14)
$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} \operatorname{osc}_{I_i} f \cdot \operatorname{osc}_{I_i} \alpha < \varepsilon, \quad \text{where} \quad I_i := [x_{i-1}, x_i].$$

Step 2. Fix a constant $\varepsilon_1 > 0$. Note that since $\alpha(x)$ is a monotone function, its set of points of discontinuity S_{α} is at most countable: $S_{\alpha} := \{c_1, c_2, \ldots\}$. From the assumption (I) in Theorem B.3 it follows that for each $j = 1, 2, \ldots$, one can choose a small constant $h_j > 0$ such that

(15)
$$\operatorname{osc}_{I_{1,j}^-} f \cdot \operatorname{osc}_{I_{1,j}^-} \alpha < 2^{-j} \varepsilon_1, \quad \operatorname{osc}_{I_{1,j}^+} f \cdot \operatorname{osc}_{I_{1,j}^+} \alpha < 2^{-j} \varepsilon_1, \quad \text{for} \quad j = 1, 2, \dots,$$

where $I_{1,j}^{-} := [c_j - h_j, c_j], \ I_{1,j}^{+} := [c_j, c_j + h_j].$ Obviously, we also have

(16)
$$S_{\alpha} := \{c_1, c_2, \ldots\} \subset V_1 := \bigcup_{j \ge 1} I_{1,j}, \text{ where } I_{1,j} := (a_{1,j}, b_{1,j}) := (c_j - h_j, c_j + h_j).$$

Step 3. Based on the constant $\varepsilon_1 > 0$, define the set

(17)
$$F := \{ p \in [a,b] : \omega_f(p) \ge \varepsilon_1 > 0 \}.$$

We claim (as in [T, Lemma 3.5.4]) that F is **compact**. Indeed, if $p_j \in F$ and $p_j \to p_0 \in [a, b]$ as $j \to \infty$, then for an arbitrary h > 0 there is j such that $|p_j - p_0| < h/2$. For such j, we have $(p_j - h/2, p_j + h/2) \subset (p_0 - h, p_0 + h)$, hence by (8) and (9), the oscillation of f,

$$\underset{[p_0-h,p_0+h]}{\operatorname{osc}} f \ge \underset{[p_j-h/2,p_j+h/2]}{\operatorname{osc}} f \ge \omega_f(p_j) \ge \varepsilon_1,$$

and

$$\omega_f(p_0) := \lim_{h \to 0+} \operatorname{osc}_{[p_0 - h, p_0 + h]} f \ge \varepsilon_1 > 0, \quad \text{i.e.} \quad p_0 \in F.$$

This argument proves the compactness of F.

Step 4. Further, note that $F \subset S_f$ – the set of points of discontinuity of f. Therefore, by our assumption (II), for the given constant $\varepsilon_1 > 0$, there exists a sequence of intervals $I_{2,j} := (a_{2,j}, b_{2,j})$ such that

(18)
$$(F \setminus S_{\alpha}) \subset (S_f \setminus S_{\alpha}) \subset V_2 := \bigcup_j I_{2,j}, \text{ and } \sum_j (\alpha(b_{2,j}) - \alpha(a_{2,j})) < \varepsilon_1.$$

Step 5. From (16) and (18) it follows $F \subset (V_1 \cup V_2)$, so that the compact set F is covered by the union of two families of open intervals $\{I_{1,j}\}$ and $\{I_{2,j}\}$. Therefore, one can choose finite subfamilies $\{I'_{1,j}\} \subset \{I_{1,j}\}$ and $\{I'_{2,j}\} \subset \{I_{2,j}\}$ such that

(19)
$$F \subset (V'_1 \cup V'_2), \text{ where } V'_1 := \bigcup_j I'_{1,j}, V'_2 := \bigcup_j I'_{2,j}.$$

Consider another compact set $F' := [a, b] \setminus (V'_1 \cup V'_2)$. Since F' does not intersect F, we have $\omega_f(p) < \varepsilon_1$ for every $p \in F'$. By definition of $\omega_f(p)$ in (9),

(20)
$$\operatorname{osc}_{[p-h,p+h]} f < \varepsilon_1 \quad \text{for every} \quad p \in F' \quad \text{with some} \quad h = h(p) > 0.$$

The family of the corresponding open intervals $\{(p-h, p+h), p \in F'\}$ covers the compact F'. Therefore, this family contains a finite subfamily $\{I'_{3,j} := (a_{3,j}, b_{3,j})\}$ such that

(21)
$$F' \subset V'_3 := \bigcup_j I'_{3,j}, \text{ and } \operatorname{osc}_{[a_{3,j},b_{3,j}]} f < \varepsilon_1 \text{ for each } j.$$

Step 6. It is easy to see that (19) and (21) imply $[a, b] \subset (V'_1 \cup V'_2 \cup V'_3)$, so that [a, b] is covered by the union of three finite families of open intervals $\{I'_{1,j}\}, \{I'_{2,j}\},$ and $\{I'_{3,j}\}$. Let $P := \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ be a partition of [a, b], which includes the point a, b, all the endpoints of intervals $I'_{1,j}, I'_{2,j}, I'_{3,j}$, and also the centers c_j of the intervals $I'_{1,j} := (c_j - h_j, c_j + h_j)$, which belong to (a, b).

Denote $I_i := [x_{i-1}, x_i]$ for i = 1, 2, ..., n. Note that I_i are closed intervals, whereas $I'_{1,j}, I'_{2,j}, I'_{3,j}$ are open. However, all the estimates (15), (18), and (21), hold true for closed intervals.

Let A_1 denote the set of all indices $i \in \{1, 2, ..., \}$ such that $I_i \subset V'_1$, A_2 – the set of all $i \notin A_1$ such that $I_2 \subset V'_2$, and A_3 – the set of all the remaining i, for which we automatically have $I_i \subset V'_3$, because $[a, b] \subset (V'_1 \cup V'_2 \cup V'_3)$.

For each $i \in A_1$, we have either $I_i \subset I_{1,j}^-$ or $I_i \subset I_{1,j}^+$ for some j, hence by virtue of (15),

(22)
$$\sum_{i \in A_1} \operatorname{osc}_{I_i} f \cdot \operatorname{osc}_{I_i} \alpha < 2 \sum_{j=1}^{\infty} 2^{-j} \varepsilon_1 = 2\varepsilon_1$$

Similarly, since $|f| \leq M$, we have $\operatorname{osc} f \leq 2M$, and the last inequality in (18) implies

(23)
$$\sum_{i \in A_2} \underset{I_i}{\operatorname{osc}} f \cdot \underset{I_i}{\operatorname{osc}} \alpha \leq 2M \sum_{i \in A_2} \underset{I_i}{\operatorname{osc}} \alpha < 2M \cdot \varepsilon_1.$$

Finally, from (21) and monotonicity of α it follows

(24)
$$\sum_{i \in A_3} \underset{I_i}{\operatorname{osc}} f \cdot \underset{I_i}{\operatorname{osc}} \alpha \leq \varepsilon_1 \sum_{i \in A_3} \underset{I_i}{\operatorname{osc}} \alpha \leq (\alpha(b) - \alpha(a)) \cdot \varepsilon_1.$$

Since $A_1 \cup A_2 \cup A_3 = \{1, 2, ..., n\}$, the estimates (22)–(24) yield

$$\sum_{i=1}^{n} \underset{I_i}{\operatorname{osc}} f \cdot \underset{I_i}{\operatorname{osc}} \alpha \leq \left(2 + 2M + \alpha(b) - \alpha(a)\right) \cdot \varepsilon_1 < \varepsilon,$$

provided $0 < \varepsilon_1 < (2 + 2M + \alpha(b) - \alpha(a))^{-1} \varepsilon$. Thus we have the desired estimate (14) and lemma is proved.

References

- [H] H. J. Ter Horst, Riemann-Stieltjes and Lebesgue-Stieltjes Integrability, Amer. Math. Monthly, vol. 91, 1984, pp. 551–559.
- [R] W. Rudin, *Principles of Mathematical Analysis*, 3rd edition.
- [T] W. F. Trench, *Introduction to real analysis*.