
Appendix B.
Criterion of Riemann-Stieltjes Integrability

This note is complementary to [R, Ch. 6] and [T, Sec. 3.5]. The main result of this note
is Theorem B.3, which provides the necessary and sufficient conditions for Riemann-Stieltjes
integrability of f with respect to α in terms of sets of point of discontinuity of these functions.
In an equivalent form, this result is contained in [H, Theorem C]. Here we give a more direct
proof, which does not use explicitly the Lebesgue measure.

Let α = α(x) be a monotonically non-decreasing function on a finite interval [a, b], and let
f = f(x) be a bounded real function on [a, b]. For an arbitrary partition

P := {a = x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = b} of [a, b],

we define the upper and lower sums as follows:

(1) U(P, f, α) :=
n∑

i=1

Mi ∆αi, L(P, f, α) :=
n∑

i=1

mi ∆αi,

where

(2) Mi := sup
[xi−1,xi]

f ≥ mi := inf
[xi−1,xi]

f, ∆αi := α(xi)− α(xi−1) for i = 1, 2, . . . , n.

For any two partitions P1 and P2, their common refinement P ∗ := P1 ∪ P2 satisfies (see [R,
Theorem 6.4])

(3) U(P1, f, α) ≥ U(P ∗, f, α) ≥ L(P ∗, f, α) ≥ L(P2, f, α).

Therefore, we always have

(4) inf
P

U(P, f, α) ≥ sup
P

L(P, f, α).

Definition B.1. The function f is Riemann-Stieltjes integrable with respect to α on [a, b]
if both sides of (4) are equal. In this case, we write f ∈ R(α) on [a, b] and define the Riemann-
Stieltjes integral

(5)

∫ b

a

f dα := inf
P

U(P, f, α) = sup
P

L(P, f, α).

Theorem B.2 ([R], Theorem 6.6). f ∈ R(α) on [a, b] if and only if for every ε > 0 there exists
a partition P such that

(6) U(P, f, α)− L(P, f, α) < ε.

Proof. For every ε > 0 there are partitions P1 and P2 such that

U(P1, f, α) < inf
P

U(P, f, α) +
ε

2
, L(P2, f, α) > sup

P
U(P, f, α)− ε

2
.

If f ∈ R(α) on [a, b], then we have equality in (4), which implies

0 ≤ U(P1, f, α)− L(P2, f, α) <
ε

2
+

ε

2
= ε,

and (6) follows from (3) with P = P ∗ := P1 ∪ P2.

On the other hand, if we have (6), then the difference between inf and sup in (4) is less
than ε. Since ε > 0 is arbitrary, we must have the equality, i.e. f ∈ R(α) on [a, b]. ¤
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Further, since α(x) is non-decreasing on [a, b], there are one-sided limits

α(p−) := lim
y→p−

α(y), a < p ≤ b; α(p+) := lim
y→p+

α(y), a ≤ p < b,

and α(p−) ≤ α(p) ≤ α(p+).

Theorem B.3. Let f be a bounded real function on [a, b]. Then f ∈ R(α) on [a, b] if and only
if f and α satisfy both properties (I) and (II) below.

(I) (i) If α(p−) < α(p), a < p ≤ b, then ∃f(p−) = f(p).
(ii) If α(p) < α(p+), a ≤ p < b, then ∃f(p+) = f(p).

(II) Let Sf and Sα denote the sets of points of discontinuity of f and α correspondingly.
Then for every ε > 0 there exists a (finite or countable) sequence of intervals (aj, bj), j ≥ 1,
such that

(7) S := (Sf \ Sα) ⊂
⋃
j

(aj, bj), and
∑

j

(
α(bj)− α(aj)

)
< ε.

Here the intervals (aj, bj) are not necessarily contained in [a, b]. We extend f ≡ f(a), α ≡ α(a)
on (−∞, a) and f ≡ f(b), α ≡ α(b) on (b, +∞), so that the last expression, and also the
expression in (9) below, are well defined in any case.

Remark B.4. The property (I) simply says that if f ∈ R(α) on [a, b], then f and α cannot be
both left-discontinuous, or both right-discontinuous at same point. Of course, this property is
redundant if α is continuous on [a, b]. By change of variable ([R, Theorem 6.19]), this case can
be reduced to α(x) ≡ x. In this particular case, our theorem is contained in [T, Theorem 3.5.6].

Definition B.5. The oscillation of f on a set A,

(8) osc
A

f := sup
A

f − inf
A

f = sup
x,y∈A

|f(x)− f(y)|.

If f is defined on [a, b], then the oscillation of f at a point p ∈ [a, b],

(9) ωf (p) := lim
h→0+

osc
[p−h,p+h]

f.

Lemma B.6. (i) f is continuous at p if and only if ωf (p) = 0;
(ii) f(p−) = f(p) if and only if osc

[p−h,p]
f → 0 as h → 0+;

(iii) f(p+) = f(p) if and only if osc
[p,p+h]

f → 0 as h → 0+.

We skip the proof, because it is very elementary (see [T, Theorem 3.5.2]).

Lemma B.7. If f ∈ R(α) on [a, b], then f and α satisfy the properties (I) in Theorem B.3.

Proof. Let p be a point such that α(p−) < α(p), a < p ≤ b. By Theorem B.2, for every ε > 0
there is a partition P := {a = x0 ≤ x1 ≤ . . . ≤ xn = b} (depending on α) such that

(10) U(P, f, α)− L(P, f, α) =
n∑

i=1

(Mi −mi) ·∆αi < ε.

Next, for small h ∈ (0, p − a), the interval (p − h, p) does not contain point xi ∈ P . From (3)
(with P1 = P2 = P ) it follows that the refined partition P ∗ := P ∪ {p− h, p} satisfies

U(P ∗, f, α)− L(P ∗, f, α) ≤ U(P, f, α)− L(P, f, α) < ε
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Therefore, replacing P by P ∗ if necessary, we can assume that p− h, p ∈ P , i.e.

p− h = xi0−1 < p = xi0 for some i0 ∈ {1, 2, . . . , n}.
Then from (10) it follows

osc
[p−h,p]

f ·∆αi0 =
(
Mi0 −mi0

) ·∆αi0 < ε.

Since ∆αi0 = α(p) − α(p − h) ≥ α(p) − α(p−) > 0, and ε > 0 can be chosen arbitrarily small,
we conclude that osc

[p−h,p]
f → 0 as h → 0+. By Lemma B.6(ii), we have f(p−) = f(p).

The proof of part (i) in (I) is complete. Part (ii) can be proved quite similarly. ¤

Lemma B.8. If f ∈ R(α) on [a, b], then f and α satisfy the property (II) in Theorem B.3.

Proof. By Lemma B.6(i), the set of points of discontinuity of f ,

(11) Sf =
{
p ∈ [a, b] : ωf (p) > 0

}
=

∞⋃

k=1

Fk, where Fk :=
{
p ∈ [a, b] : ωf (p) ≥ 2−k

}
.

Fix ε > 0. By Theorem B.2, for every k = 1, 2, . . ., there exists a partition P := {a = x0 ≤
x1 ≤ . . . ≤ xn = b} (depending on k) such that

(12) U(P, f, α)− L(P, f, α) =
n∑

i=1

(Mi −mi) ·∆αi < εk := 4−kε.

Note that if p ∈ Fk \ P , then for some i ∈ {1, 2, . . . , n} we have p ∈ (xi−1, xi), and Mi −mi ≥
ωf (p) ≥ 2−k. Let Ak denote the set of all such indices i. Then

(13) (Fk \ P ) ⊂
⋃

i∈Ak

(xi − xi−1), and
∑
i∈Ak

∆αi ≤ 2k
∑
i∈Ak

(Mi −mi) ·∆αi < 2−kε.

Further, Fk \ Sα is contained in (Fk \ P ) ∪ (P \ Sα). Since α(x) is continuous at every
point p ∈ P \ Sα, one can cover such point by intervals (p − h, p + h) with arbitrarily small
α(p + h)− α(p− h). Together with (xi−1, xi), i ∈ Ak, these intervals compose a finite family of
intervals (ak,i, bk,i) such that

(Fk \ Sα) ⊂
⋃
i

(ak,i, bk,i), and
∑

i

(
α(bk,i)− α(ak,i)

)
< 2−kε.

Finally, by virtue of (11),

(Sf \ Sα) =
∞⋃

k=1

(Fk \ Sα) ⊂
∞⋃

k=1

⋃
i

(ak,i, bk,i), and
∞∑

k=1

∑
i

(
α(bk,i)− α(ak,i)

)
<

∞∑

k=1

2−kε = ε.

Since the countable set of intervals {(ak,i, bk,i)} can be renumbered as {(aj, bj)}, we get the
desired property (7). ¤

The following lemma, together with the previous Lemmas B.7 and B.8, completes the proof of
Theorem B.3.

Lemma B.9. Let f be a bounded function on [a, b] satisfying the properties (I) and (II) in
Theorem B.3. Then f ∈ R(α) on [a, b].
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Proof. Step 1. We have |f | ≤ M = const < ∞ on [a, b]. By Theorem B.2, it suffices to show that
for an arbitrary ε > 0, there exists a partition P := {a = x0 < x1 < . . . < xn−1 < xn = b} of
[a, b] satisfying the inequality (6) for given f and α. This inequality can be written in the form

(14) U(P, f, α)− L(P, f, α) =
n∑

i=1

osc
Ii

f · osc
Ii

α < ε, where Ii := [xi−1, xi].

Step 2. Fix a constant ε1 > 0. Note that since α(x) is a monotone function, its set of points of
discontinuity Sα is at most countable: Sα := {c1, c2, . . .}. From the assumption (I) in Theorem
B.3 it follows that for each j = 1, 2, . . ., one can choose a small constant hj > 0 such that

(15) osc
I−1,j

f · osc
I−1,j

α < 2−jε1, osc
I+
1,j

f · osc
I+
1,j

α < 2−jε1, for j = 1, 2, . . . ,

where I−1,j := [cj − hj, cj], I+
1,j := [cj, cj + hj]. Obviously, we also have

(16) Sα := {c1, c2, . . .} ⊂ V1 :=
⋃
j≥1

I1,j, where I1,j := (a1,j, b1,j) := (cj − hj, cj + hj).

Step 3. Based on the constant ε1 > 0, define the set

(17) F := {p ∈ [a, b] : ωf (p) ≥ ε1 > 0}.
We claim (as in [T, Lemma 3.5.4]) that F is compact. Indeed, if pj ∈ F and pj → p0 ∈ [a, b] as
j → ∞, then for an arbitrary h > 0 there is j such that |pj − p0| < h/2. For such j, we have
(pj − h/2, pj + h/2) ⊂ (p0 − h, p0 + h), hence by (8) and (9), the oscillation of f ,

osc
[p0−h,p0+h]

f ≥ osc
[pj−h/2, pj+h/2]

f ≥ ωf (pj) ≥ ε1,

and

ωf (p0) := lim
h→0+

osc
[p0−h,p0+h]

f ≥ ε1 > 0, i.e. p0 ∈ F.

This argument proves the compactness of F .

Step 4. Further, note that F ⊂ Sf – the set of points of discontinuity of f . Therefore, by our
assumption (II), for the given constant ε1 > 0, there exists a sequence of intervals I2,j := (a2,j, b2,j)
such that

(18) (F \ Sα) ⊂ (Sf \ Sα) ⊂ V2 :=
⋃
j

I2,j, and
∑

j

(
α(b2,j)− α(a2,j)

)
< ε1.

Step 5. From (16) and (18) it follows F ⊂ (V1 ∪ V2), so that the compact set F is covered
by the union of two families of open intervals {I1,j} and {I2,j}. Therefore, one can choose finite
subfamilies {I ′1,j} ⊂ {I1,j} and {I ′2,j} ⊂ {I2,j} such that

(19) F ⊂ (V ′
1 ∪ V ′

2), where V ′
1 :=

⋃
j

I ′1,j, V ′
2 :=

⋃
j

I ′2,j.

Consider another compact set F ′ := [a, b] \ (V ′
1 ∪ V ′

2). Since F ′ does not intersect F , we have
ωf (p) < ε1 for every p ∈ F ′. By definition of ωf (p) in (9),

(20) osc
[p−h,p+h]

f < ε1 for every p ∈ F ′ with some h = h(p) > 0.
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The family of the corresponding open intervals {(p− h, p + h), p ∈ F ′} covers the compact F ′.
Therefore, this family contains a finite subfamily {I ′3,j := (a3,j, b3,j)} such that

(21) F ′ ⊂ V ′
3 :=

⋃
j

I ′3,j, and osc
[a3,j ,b3,j ]

f < ε1 for each j.

Step 6. It is easy to see that (19) and (21) imply [a, b] ⊂ (V ′
1 ∪ V ′

2 ∪ V ′
3), so that [a, b] is

covered by the union of three finite families of open intervals {I ′1,j}, {I ′2,j}, and {I ′3,j}. Let
P := {a = x0 < x1 < . . . < xn−1 < xn = b} be a partition of [a, b], which includes the
point a, b, all the endpoints of intervals I ′1,j, I

′
2,j, I

′
3,j, and also the centers cj of the intervals

I ′1,j := (cj − hj, cj + hj), which belong to (a, b).

Denote Ii := [xi−1, xi] for i = 1, 2, . . . , n. Note that Ii are closed intervals, whereas I ′1,j, I
′
2,j, I

′
3,j

are open. However, all the estimates (15), (18), and (21), hold true for closed intervals.

Let A1 denote the set of all indices i ∈ {1, 2, . . . , } such that Ii ⊂ V ′
1 , A2 – the set of all i /∈ A1

such that I2 ⊂ V ′
2 , and A3 – the set of all the remaining i, for which we automatically have

Ii ⊂ V ′
3 , because [a, b] ⊂ (V ′

1 ∪ V ′
2 ∪ V ′

3).

For each i ∈ A1, we have either Ii ⊂ I−1,j or Ii ⊂ I+
1,j for some j, hence by virtue of (15),

(22)
∑
i∈A1

osc
Ii

f · osc
Ii

α < 2
∞∑

j=1

2−jε1 = 2ε1.

Similarly, since |f | ≤ M , we have osc f ≤ 2M , and the last inequality in (18) implies

(23)
∑
i∈A2

osc
Ii

f · osc
Ii

α ≤ 2M
∑
i∈A2

osc
Ii

α < 2M · ε1.

Finally, from (21) and monotonicity of α it follows

(24)
∑
i∈A3

osc
Ii

f · osc
Ii

α ≤ ε1

∑
i∈A3

osc
Ii

α ≤ (
α(b)− α(a)

) · ε1.

Since A1 ∪ A2 ∪ A3 = {1, 2, . . . , n}, the estimates (22)–(24) yield
n∑

i=1

osc
Ii

f · osc
Ii

α ≤ (
2 + 2M + α(b)− α(a)

) · ε1 < ε,

provided 0 < ε1 <
(
2 + 2M + α(b) − α(a)

)−1
ε. Thus we have the desired estimate (14) and

lemma is proved. ¤
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