Appendix B.
Criterion of Riemann-Stieltjes Integrability

This note is complementary to [R, Ch. 6] and [T, Sec. 3.5]. The main result of this note
is Theorem B.3, which provides the necessary and sufficient conditions for Riemann-Stieltjes
integrability of f with respect to a in terms of sets of point of discontinuity of these functions.
In an equivalent form, this result is contained in [H, Theorem C]. Here we give a more direct
proof, which does not use explicitly the Lebesgue measure.

Let @ = a(z) be a monotonically non-decreasing function on a finite interval [a,b], and let
f = f(z) be a bounded real function on [a,b]. For an arbitrary partition

P={a=2<2<...<zp1<x,=0} of [a,b],

we define the upper and lower sums as follows:

(1) U(P, f,a) ZM Aaj,  L(P, fa):=) miAaq,
i=1
where
(2) M;:= sup f>m;:= [ inf f, Aa; = afx;) — a(z;q) for i=1,2,...,n.
[xi—1,2i] Ti—1,Ti

For any two partitions P, and P,, their common refinement P* := P, U P, satisfies (see [R,
Theorem 6.4])

(3) U(th’a) Z U(P*vfaa) Z L(P*,f7O[) Z L(P27faa)'
Therefore, we always have
(4) inf U(P, f,0) > sup L(P, f, ).

P

Definition B.1. The function f is Riemann-Stieltjes integrable with respect to a on [a, b]
if both sides of (4) are equal. In this case, we write f € R(«) on [a, b] and define the Riemann-
Stieltjes integral

(5) /bfda = ir}ng(P, f,a) = Sl;p L(P, f,«a).

Theorem B.2 ([R], Theorem 6.6). f € R(«) on |a,b] if and only if for every e > 0 there exists
a partition P such that

(6) U(P,f,O./)—L(P,f,Oé)<5.
Proof. For every € > 0 there are partitions P, and P, such that

U(Py f.0) <fU(P.fa) +5.  L(Ps, f.a) > swpU(P, f.a) = 5.
If f € R(«) on [a,b], then we have equality in (4), which implies
0 S UR, f.0) = L(Py f0) < 5+ 5 =,
and (6) follows from (3) with P = P* := P, U P.
On the other hand, if we have (6), then the difference between inf and sup in (4) is less

than e. Since € > 0 is arbitrary, we must have the equality, i.e. f € R(a) on [a,b]. O
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Further, since a(x) is non-decreasing on [a, b], there are one-sided limits

a(p—) = lim a(y), a<p<b; a(pt) = lim a(y), a<p<b,
y=p= y—p+

and a(p—) < a(p) < a(p+).

Theorem B.3. Let f be a bounded real function on |a,b]. Then f € R(«) on |a,b] if and only
if f and « satisfy both properties (1) and (1I) below.
(D) (1) Ifalp—) <alp), a <p <b, then 3f(p—) = f(p)-
(i) If a(p) < a(p+), a < p < b, then If(p+) = f(p).
(IT) Let Sf and S, denote the sets of points of discontinuity of f and o correspondingly.

Then for every € > 0 there exists a (finite or countable) sequence of intervals (a;,b;), j > 1,
such that

(7) S = (S5 \ Sa) C U(aj,bj), and Z — afay)) <e.

Here the intervals (a;, b;) are not necessarily contained in [a, b]. We extend f = f(a), o = a(a)
on (—oo,a) and f = f(b), « = «a(b) on (b,+00), so that the last expression, and also the
expression in (9) below, are well defined in any case.

Remark B.4. The property (I) simply says that if f € R(«) on [a,b], then f and « cannot be
both left-discontinuous, or both right-discontinuous at same point. Of course, this property is
redundant if « is continuous on [a, b]. By change of variable ([R, Theorem 6.19]), this case can
be reduced to a(z) = x. In this particular case, our theorem is contained in [T, Theorem 3.5.6].

Definition B.5. The oscillation of f on a set A,
® ose fi=sup f —inf f = sup |/(x) — ()]

z,yeA
If f is defined on [a, b], then the oscillation of f at a point p € [a, b],

® ose)i= iy oxc

Lemma B.6. (i) f is continuous at p if and only if we(p) =0;
(i) f(p—) = f(p) if and only if [posl.lc ] f—0ash— 0+;
—,p

(iii) f(p+) = f(p) if and only if [p%si:h} f—0as h — 0+.

We skip the proof, because it is very elementary (see [T, Theorem 3.5.2]).
Lemma B.7. If f € R(«) on [a,b], then f and « satisfy the properties (I) in Theorem B.S3.

Proof. Let p be a point such that a(p—) < a(p), a < p < b. By Theorem B.2, for every ¢ > 0
there is a partition P :={a =29 < z; < ... <z, = b} (depending on «) such that
(10) U(P, f,) = L(P, f,) = > (M; —m;) - Aq; < e.

i=1
Next, for small A € (0,p — a), the interval (p — h,p) does not contain point z; € P. From (3)
(with P, = P, = P) it follows that the refined partition P*:= P U {p — h,p} satisfies

U(P*,f,a)—L(P*,f,a) SU(P,f,Oé)—L(P,f,OJ)<8
B-2



Therefore, replacing P by P* if necessary, we can assume that p — h,p € P, i.e.
p—h=umz,_1<p=uwx, forsome i€ {l,2,...,n}
Then from (10) it follows

osc f-Aay, = (M, —myy) - A, < €.
[p—h.p]

Since Ay, = a(p) — a(p — h) > a(p) — a(p—) > 0, and € > 0 can be chosen arbitrarily small,

we conclude that [poshc ] f—0ash— 0+. By Lemma B.6(ii), we have f(p—) = f(p).
—h,p
The proof of part (i) in (I) is complete. Part (ii) can be proved quite similarly. O

Lemma B.8. If f € R(a) on [a,b], then f and « satisfy the property (1) in Theorem B.3.

Proof. By Lemma B.6(i), the set of points of discontinuity of f,

(11) Sp={p€lab: wp) >0} = U Fy, where Fj,:={p€[a,b]: wy(p) >27"}.
k=1

Fix ¢ > 0. By Theorem B.2, for every k = 1,2, ..., there exists a partition P := {a = xy <
1 < ... <z, =0b} (depending on k) such that
(12) U(P, f,a) = L(P, f,a) = Y (M; = m;) - Aoy < g, 1= 47"e.

i=1

Note that if p € F}, \ P, then for some i € {1,2,...,n} we have p € (x;_1,x;), and M; — m; >
wr(p) > 27", Let Aj denote the set of all such indices i. Then

(13) (F, \ P) C U (¢ —xi—1), and Z Aa; < 2F Z<M’ —m;) - Aoy < 27"
1€AL 1€A 1€AL

Further, Fj \ S, is contained in (Fj \ P) U (P \ S,). Since a(z) is continuous at every
point p € P\ S,, one can cover such point by intervals (p — h,p + h) with arbitrarily small
a(p+ h) —a(p — h). Together with (x;_1,2;), i € Ay, these intervals compose a finite family of
intervals (ay,;, by ;) such that

(Fy \ Sa) CUakZ,bm and Z (br.i) —aakl))<2’k5.

Finally, by virtue of (11),

o0

(Sf\Sa):[j (Fy \ Sa) UUG’“’b’“ and ZZ (bg;) — afa.;) <22 be —¢.
k=1 i

k=1 1
Since the countable set of intervals {(ax;,bx;)} can be renumbered as {(a;,b;)}, we get the
desired property (7). O

The following lemma, together with the previous Lemmas B.7 and B.8, completes the proof of
Theorem B.3.

Lemma B.9. Let f be a bounded function on [a,b] satisfying the properties (I) and (II) in
Theorem B.3. Then f € R(«) on [a,b].
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Proof. Step 1. We have |f| < M = const < oo on [a,b]. By Theorem B.2, it suffices to show that
for an arbitrary € > 0, there exists a partition P := {a = zg < 21 < ... < Tp,_1 < x, = b} of
la, b] satisfying the inequality (6) for given f and «. This inequality can be written in the form

(14) U(P, f,a) — L(P, f,a) = Zo}spf rosca < e, where [; := [z;_1, x;].

Step 2. Fix a constant £; > 0. Note that since a(z) is a monotone function, its set of points of
discontinuity S, is at most countable: S, := {c1,ca,...}. From the assumption (I) in Theorem

B.3 it follows that for each j =1,2,..., one can choose a small constant h; > 0 such that
(15) osc f-osca < 277eq, oscf osca < 277gy, for j=1,2,...,

Ly hy LW
where I, = [¢; — hj, ¢;], I, := [¢j, ¢; + hy]. Obviously, we also have

(16) Sa = {Cl,CQ, .. } C ‘/1 = U [17]', where IL]' = (al,j>bl,j) = (Cj — hj,Cj + h])

Jj=1
Step 3. Based on the constant €; > 0, define the set
(17) F:={pe€a,b]: we(p) >e >0}

We claim (as in [T, Lemma 3.5.4]) that F is compact. Indeed, if p; € F and p; — py € [a, b] as
Jj — o0, then for an arbitrary h > 0 there is j such that |p; — po| < h/2. For such j, we have
(pj —h/2,p; + h/2) C (po — h,po + h), hence by (8) and (9), the oscillation of f,

0sC > 0sc > wi(p;) > e,
[Po—h,po+h] f - [p;—h/2, pj+h/2] f fal f(pj) = &1

and

w = lim 0sc >e1 >0, ie. e F.
+(po) et [prh’pﬁh]f Z €1 Do

This argument proves the compactness of F'.

Step 4. Further, note that F' C S — the set of points of discontinuity of f. Therefore, by our
assumption (II), for the given constant e; > 0, there exists a sequence of intervals I j := (ag ;, ba ;)
such that

(18) (F\ Sy) C (Sf\ Sa) C Vo= Ufzj, and Z a(by;) — alasy)) < e

Step 5. From (16) and (18) it follows F' C (Vi U V3), so that the compact set F' is covered
by the union of two families of open intervals {I; ;} and {I5;}. Therefore, one can choose finite
subfamilies {/] ;} C {/1;} and {I5;} C {l2;} such that

(19) Fc (VJUuVy), where V/:= UI{J, Vy = Ulé,j'
- :

Consider another compact set F’ := [a,b] \ (V] UVJ). Since F’ does not intersect F', we have
wr(p) < e for every p € F'. By definition of wy(p) in (9),

(20) osc f<e forevery peF' withsome h=h(p)>0.
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The family of the corresponding open intervals {(p — h,p + h), p € F'} covers the compact F'.
Therefore, this family contains a finite subfamily {3 ; := (as;, b3;)} such that

(21) F'cVy = Uji/”’j’ and [ago‘sbcg ’]f < e foreach j.
j »J 79,0

Step 6. It is easy to see that (19) and (21) imply [a,b] C (V] U V] UVY), so that [a,b] is
covered by the union of three finite families of open intervals {I;}, {I3,}, and {I3,}. Let
P:={a=xy <z <...<2xy1 < ax, = b} be a partition of [a,b], which includes the

point a,b, all the endpoints of intervals I ;, I ;, I3 ;, and also the centers c¢; of the intervals
I1 ; == (¢j — hj, ¢; + hy), which belong to (a,b).
Denote I; := [z;_1, ;] fori = 1,2,...,n. Note that I; are closed intervals, whereas I} ;, I ;, I3 ;

are open. However, all the estimates (15), (18), and (21), hold true for closed intervals.

Let A; denote the set of all indices i € {1,2,...,} such that I; C V/, Ay —the set of all i ¢ A,
such that I, C V4, and A3 — the set of all the remaining ¢, for which we automatically have
I; C V4, because [a,b] C (V/ UV UVY).

For each ¢ € Ay, we have either I; C I, ; or I; C ]fj for some j, hence by virtue of (15),

. —Jg, —
(22) Zolsicf olsicoz<222 g1 = 2¢1.
1€AY j=1

Similarly, since |f| < M, we have osc f < 2M, and the last inequality in (18) implies
(23) ZO]Sin-O]SiCQSQM Zolsica<2M-51.

1€A 1€A2
Finally, from (21) and monotonicity of « it follows
(24) ; OISin osca < e ; osc o < (a(b) — ala)) - 1.

1€EA3 1€A3

Since A; U Ay U A3 ={1,2,...,n}, the estimates (22)-(24) yield
Zolscf -osca < (24 2M + a(b) — a(a)) - &1 <,
=1 '

provided 0 < &1 < (24 2M + a(b) — a(a))_la Thus we have the desired estimate (14) and
lemma is proved. [l
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