Appendix C. Properties of Real Symmetric Matrices

A matrix A is symmetric if $A=A^{T}$ - the transpose of A. This means that $a=\left[a_{i j}\right]$ is $n \times n$ matric with $a_{i j}=a_{j i}$ for all $i, j=1,2, \ldots, n$. We treat vector in \mathbb{R}^{n} as column vectors: $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}, y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$, etc., with dot or scalar product

$$
x \cdot y=(x, y):=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k} .
$$

Then

$$
(A x, y)=\sum_{i, j=1}^{n} a_{i j} x_{j} y_{i}=\left(x, A^{T} y\right)
$$

In particular,

$$
\begin{equation*}
(A x, y)=(x, A y) \quad \text { for all } \quad x, y \in \mathbb{R}^{n} \quad \text { if } \quad A=A^{T} \tag{1}
\end{equation*}
$$

It is easy to verify that the gradient

$$
\begin{equation*}
\nabla(A x, x) \equiv 2 A x \quad \text { if } \quad A=A^{T} . \tag{2}
\end{equation*}
$$

Definition C.1. If $A v=\lambda v$, where $0 \neq v \in \mathbb{R}^{n}$, then v is an eigenvector of A, and λ is the corresponding eigenvalue.

The equality $A v=\lambda v$ is equivalent to $(A-\lambda I) v=0$, where I is the unit matrix. This implies that all the eigenvalues of A are roots of the characteristic equation

$$
\begin{equation*}
p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

Theorem C.2. For every real symmetric $n \times n$ matrix A, there is an orthonormal basis v_{1}, v_{2}, \ldots, v_{n} in \mathbb{R}^{n} of eigenvectors of $A: A v_{k}=\lambda_{k} v_{k}$ for $k=1,2, \ldots, n$, with $\lambda_{k} \in \mathbb{R}^{1}$.

Proof. Step 1. The function $(A x, x)$ is continuous on the compact set $\{|x|=1\} \subset \mathbb{R}^{n}$. Therefore, it attains

$$
\lambda_{1}:=\min _{|x|=1}(A x, x)=\left(A v_{1}, v_{1}\right) \quad \text { at some point } \quad v_{1} \in \mathbb{R}^{n},\left|v_{1}\right|=1
$$

Then the function

$$
f_{1}(x):=(A x, x)-\lambda_{1}|x|^{2}
$$

attains its minimum value $f_{1}\left(v_{1}\right)=0$ on $\{|x|=1\}$. Since f_{1} is homogeneous of degree 2 , we have $f_{1} \geq 0$ in \mathbb{R}^{n}, and $f_{1}(x)$ attains its local minimum at $x=v_{1}$. At this point, we must have, using (2):

$$
\nabla f_{1}(x)=2 A x-2 \lambda_{1} x=0
$$

This means $A v_{1}=\lambda_{1} v_{1}$.
Step 2. Next, consider the subspace

$$
V_{1}:=\left\{x \in \mathbb{R}^{n}: \quad x \perp v_{1}, \quad \text { i.e. } \quad\left(x, v_{1}\right)=0\right\}
$$

If $x \in V_{1}$, then

$$
\left(A x, v_{1}\right)=\left(x, A v_{1}\right)=\underset{\mathrm{C}-1}{\left(x, \lambda_{1} v_{1}\right)=\lambda_{1}\left(x, v_{1}\right)=0, ~}
$$

i.e. $A x \in V_{1}$. Therefore, $A\left(V_{1}\right) \subset V_{1}$, and we can consider A as a linear transformation of the ($n-1$)-dimensional space V_{1} into itself. Since $(A x, y) \equiv(x, A y)$, the matrix of A in any basis of V_{1} is symmetric. This is similar to the equalities

$$
\begin{equation*}
a_{i j}=\left(A e_{j}, e_{i}\right)=\left(e_{j}, A e_{i}\right)=a_{j i} \tag{4}
\end{equation*}
$$

in the original basis

$$
\begin{equation*}
e_{1}:=(1,0, \ldots, 0,0)^{T}, \quad e_{2}:=(0,1, \ldots, 0,0)^{T}, \quad \ldots, \quad e_{n}:=(0,0, \ldots, 0,1)^{T} \quad \text { in } \quad \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

Therefore, the argument in Step 1 shows that

$$
\lambda_{2}:=\min _{|x|=1, x \perp v_{1}}(A x, x)=\left(A v_{2}, v_{2}\right), \quad \text { where } \quad A v_{2}=\lambda_{2} v_{2},\left|v_{2}\right|=1, v_{2} \perp v_{1}
$$

Step 3. Continuing this procedure, we get the set of eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ and the orthonormal system of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$:

$$
A v_{k}=\lambda_{k} v_{k} \quad \text { for all } \quad k, \quad \text { and } \quad\left(v_{i}, v_{j}\right)=\delta_{i j}:= \begin{cases}1 & \text { if } j=k \tag{6}\\ 0 & \text { if } j \neq k\end{cases}
$$

Lemma C.3. If $\left(v_{i}, v_{j}\right)=\delta_{i j}$ for all $i, j=1,2, \ldots, n$, then the matrix

$$
\begin{equation*}
S:=\left[v_{1}, v_{2}, \cdots, v_{n}\right] \quad \text { with columns } \quad v_{1}, v_{2}, \cdots, v_{n} \tag{7}
\end{equation*}
$$

is orthogonal, i.e. $S^{-1}=S^{T}$. In the new coordinates $y_{1}, y_{2}, \ldots, y_{n}$ with respect to the orthonormal basis $v_{1}, v_{2}, \cdots, v_{n}$, which satisfies (6), we have

$$
\begin{equation*}
(A x, x)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{k=1}^{n} \lambda_{k} y_{k}^{2} \tag{8}
\end{equation*}
$$

Proof. The matric $C=\left[c_{i j}\right]:=S^{T} S$ has entries

$$
\begin{aligned}
c_{i j} & =\left(i^{\text {th }} \text { row of } S^{T}\right) \cdot\left(j^{\text {th }} \text { column of } S\right) \\
& =\left(i^{\text {th }} \text { column of } S\right) \cdot\left(j^{\text {th }} \text { column of } S\right) \\
& =\left(v_{i}, v_{j}\right)=\delta_{i j} .
\end{aligned}
$$

This means that $C:=S^{T} S=I$ - the unit matrix, and $S^{-1}=S^{T}$.
In order to verify the equality (8), let $B=\left[b_{i j}\right]$ be the matrix of the transformation A in the basis $v_{1}, v_{2}, \cdots, v_{n}$. Then similarly to (4), we have

$$
b_{i j}=\left(v_{j}, A v_{i}\right)=\left(v_{j}, \lambda_{i} v_{i}\right)=\lambda_{i}\left(v_{j}, v_{i}\right)=\lambda_{i} \delta_{i j}
$$

hence

$$
(A x, x)=(B y, y)=\sum_{i, j=1}^{n} b_{i j} y_{i} y_{j}=\sum_{k=1}^{n} \lambda_{k} y_{k}^{2} .
$$

Remark C.4. If $v_{1}, v_{2}, \cdots, v_{n}$ is a basis in \mathbb{R}^{n}, i.e. linearly independent eigenvectors of $n \times n$ matrix $A=\left[a_{i j}\right]$, which is not necessarily symmetric, then $A v_{k}=\lambda_{k} v_{k}$ for $k=1,2, \ldots, n$, without the orthogonality condition $\left(v_{i}, v_{j}\right)=\delta_{i j}$. In this case, the matrices A and S in (7) still satisfy

$$
\begin{aligned}
A S & =\left[A v_{1}, A v_{2}, \cdots, A v_{n}\right]=\left[\lambda_{1} v_{1}, \lambda_{2} v_{2}, \cdots, \lambda_{n} v_{n}\right] \\
& =\left[v_{1}, v_{2}, \cdots, v_{n}\right] \cdot\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right]=S \Lambda,
\end{aligned}
$$

where $\Lambda:=\operatorname{diag}\left[\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}\right]$. This implies

$$
\begin{equation*}
A=S \Lambda S^{-1} \tag{9}
\end{equation*}
$$

i.e. A is similar to the diagonal matrix Λ. Note that the characteristic polynomials (3) for similar matrices coincide: if $A=S B S^{-1}$, then

$$
\begin{aligned}
p_{A}(\lambda) & :=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(S B S^{-1}-S \cdot \lambda I \cdot S^{-1}\right)=\operatorname{det}\left(S \cdot(B-\lambda I) \cdot S^{-1}\right) \\
& =\operatorname{det} S \cdot \operatorname{det}(B-\lambda I) \cdot \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B-\lambda I)=p_{B}(\lambda)
\end{aligned}
$$

In our case $B=\Lambda$, from (9) it follows

$$
\begin{equation*}
p_{A}(\lambda)=p_{\Lambda}(\lambda)=\prod_{k=1}^{n}\left(\lambda_{k}-\lambda\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) \tag{10}
\end{equation*}
$$

Definition C.5. The trace of a square matrix $A=\left[a_{i j}\right]$ is the sum of its diagonal elements:

$$
\operatorname{tr} A=\operatorname{tr}\left[a_{i j}\right]:=\sum_{i=1}^{n} a_{i i} .
$$

Lemma C.6. If A is a $m \times n$ matrix, and B is a $n \times m$ matrix, then the $m \times m$ matrix $A B$ and the $n \times n$ matrix $B A$ have same trace: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Proof. If $C=\left[c_{i j}\right]=A B$, then

$$
c_{i j}=\left(i^{\text {th }} \text { row of } A\right) \cdot\left(j^{\text {th }} \text { column of } B\right)=\sum_{k=1}^{n} a_{i k} b_{k j},
$$

and

$$
\operatorname{tr}(A B)=\operatorname{tr} C=\sum_{i=1}^{m} c_{i i}=\sum_{i, k} a_{i k} b_{k i} .
$$

Since the last expression is symmetric with respect to A and B, we get $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Lemma C.7. If $n \times n$ matrix A has n linearly independent eigenvectors v_{1}, v_{2}, \cdots, v_{n}, i.e. $A v_{k}=\lambda_{k} v_{k}$ for $k=1,2, \ldots, n$, then

$$
\begin{equation*}
\operatorname{det} A=\prod_{k=1}^{n} \lambda_{k}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}, \quad \operatorname{tr} A=\sum_{k=1}^{n} \lambda_{k}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} \tag{11}
\end{equation*}
$$

Proof. The first equality in (11) follows from (10) with $\lambda=0$. One can also get the second equality in (11) by comparing the coefficients of λ in both sides of (10).

Alternatively, one can apply Lemma C. 6 to (9) as follows:

$$
\operatorname{tr} A=\operatorname{tr}\left(S \cdot \Lambda S^{-1}\right)=\operatorname{tr}\left(\Lambda S^{-1} \cdot S\right)=\operatorname{tr} \Lambda=\sum_{k=1}^{n} \lambda_{k}
$$

Theorem C.8. Let A be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, i.e according to (10),

$$
p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=\prod_{k=1}^{n}\left(\lambda_{k}-\lambda\right)
$$

Then $f(x):=(A x, x)$ satisfies $\nabla f(0)=0$. In addition,
(i) if there are λ_{k} of different sign: $\lambda_{k_{1}}<0<\lambda_{k_{2}}$, then $f(x)$ has neither maximum nor minimum at $x=0$;
(ii) if $\lambda_{k}<0$ for all k, then $f(x)$ has a local maximum at $x=0$;
(iii) if $\lambda_{k}>0$ for all k, then $f(x)$ has a local minimum at $x=0$.

Proof. By (2), we have $\nabla f(x)=2 A x$, so that $\nabla f(0)=0$. The properties (i)-(iii) follow directly from the representation of $f(x):=(A x, x)$ in (8).
Corollary C.9. In the case $n=2$, the conditions (i)-(iii) in the previous theorem are simplified as follows:
(i) if $\operatorname{det} A<0$, then $f(x):=(A x, x)$ has neither maximum nor minimum at $x=0$;
(ii) if $\operatorname{det} A>0$ and $\operatorname{tr} A<0$, then $f(x)$ has a local maximum at $x=0$;
(iii) if $\operatorname{det} A>0$ and $\operatorname{tr} A>0$, then $f(x)$ has a local minimum at $x=0$.

Proof. In the case $n=2$, the equalities (11) have the form $\operatorname{det} A=\lambda_{1} \lambda_{2}$ and $\operatorname{tr} A=\lambda_{1}+\lambda_{2}$. We have $\operatorname{det} A<0$ if and only if λ_{1} and λ_{2} have opposite signs, and $\operatorname{det} A>0$ if and only if λ_{1} and λ_{2} have same sign. Hence the properties (i)-(iii) in this corollary follow from the corresponding properties in Theorem C.8.

