Math 5652: Introduction to Stochastic Processes: Spring 2014

Appendix A. Generating functions

Let X be a random variable with values in \mathbb{R}^{1}. The generating, or probability generating function of X is defined as $\phi(t)=\phi_{X}(t)=E\left(t^{X}\right)$. If X has discrete distribution with $p_{k}=P(X=k)$, $k=0,1,2, \ldots$, then

$$
\phi(t)=\sum_{k=0}^{\infty} p_{k} t^{k} \quad \text { for } \quad|t| \leq 1, \quad \text { and } \quad p_{k}=\frac{\phi^{(k)}(0)}{k!}
$$

In this case, we also have

$$
\phi(1)=1, \quad \phi^{(k)}(1)=E(X(X-1) \cdots(X-k-1)) \quad \text { for } \quad k=1,2, \ldots .
$$

The moment generating function of X is $\varphi(t)=\varphi_{X}(t)=E\left(e^{t X}\right)=\phi\left(e^{t}\right)$. If it is defined in a neighborhood of the point $t=0$, then the $k^{t h}$ moment of X,

$$
E\left(X^{k}\right)=\varphi^{(k)}(0), \quad k=1,2, \ldots
$$

In this case, we also have

$$
E(X)=\psi^{\prime}(0), \quad \operatorname{Var}(X)=\psi^{\prime \prime}(0), \quad \text { where } \quad \psi(t)=\ln \varphi(t)
$$

Note that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent, and $X=X_{1}+X_{2}+\cdots+X_{n}$, then

$$
\varphi_{X}=\varphi_{X_{1}} \cdot \varphi_{X_{2}} \cdot \ldots \cdot \varphi_{X_{n}}, \quad \psi_{X}=\psi_{X_{1}}+\psi_{X_{2}}+\ldots+\psi_{X_{n}}
$$

1. $X=\operatorname{Binomial}(n, p)$ with $n=1,2, \ldots ; 0 \leq p \leq 1$.

$$
f_{1}(k)=P(X=k)=\binom{n}{k} p^{k} q^{n-r} \quad \text { for } \quad k=0,1, \ldots, n ; \quad \text { where } \quad q=1-p ;
$$

$$
\phi_{1}(t)=E\left(t^{X}\right)=(p t+q)^{n}, \quad \varphi_{1}(t)=E\left(e^{t X}\right)=\left(p e^{t}+q\right)^{n}, \quad \mu_{1}=E(X)=n p, \quad \sigma_{1}^{2}=\operatorname{Var}(X)=n p q .
$$

2. $X=\operatorname{Poisson}(\lambda)$ with $\lambda>0$.

$$
f_{2}(k)=P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \quad \text { for } \quad k=0,1,2 \ldots ;
$$

$\phi_{1}(t)=E\left(t^{X}\right)=\exp (\lambda(t-1)), \quad \varphi_{2}(t)=E\left(e^{t X}\right)=\exp \left(\lambda\left(e^{t}-1\right)\right), \quad \mu_{2}=E(X)=\lambda, \quad \sigma_{2}^{2}=\operatorname{Var}(X)=\lambda$.
3. $X=$ Negative Binomial (r, p) - the number of trials with probability of success p until $r^{t h}$ success. $Y=X-r=$ Shifted Negative Binomial (r, p) - the number of failures before $r^{t h}$ success. We have

$$
\begin{gathered}
P(X=k)=\binom{k-1}{r-1} p^{r} q^{k-r} \text { for } k=r, r+1, \ldots ; \\
P(Y=j)=P(X=r+j)=\binom{r+j-1}{r-1} p^{r} q^{j}=\binom{r+j-1}{j} p^{r} q^{j} \quad \text { for } \quad j=0,1,2, \ldots
\end{gathered}
$$

Note that by Taylor's formula, for $a \in \mathbb{R}^{1}$ and $|t|<1$,

$$
g(t)=(1+t)^{a}=1+\sum_{k=1}^{\infty} \frac{g^{(k)}(0)}{k!} \cdot t^{k}=1+\sum_{k=1}^{\infty}\binom{a}{k} t^{k}, \quad \text { where } \quad\binom{a}{k}=\frac{a(a-1) \cdots(a-k+1)}{k!} .
$$

If $a=n$ is a natural number, then this equality is reduced to the binomial formula (for all $t \in \mathbb{R}^{1}$):

$$
g(t)=(1+t)^{n}=1+\sum_{k=1}^{n}\binom{n}{k} t^{k}, \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Substituting $t=-q$ and $a=-r$, we get

$$
1=p^{r}(1-q)^{-r}=p^{r} \cdot\left(1+\frac{r}{1!} q+\frac{r(r+1)}{2!} q^{2}+\cdots\right)=\sum_{j=0}^{\infty} P(Y=j)
$$

Note that the above distributions are well defined for all $r \in \mathbb{R}^{1}$. correspondingly,

$$
\begin{gathered}
\phi(t)=E\left(t^{Y}\right)=\sum_{j=0}^{\infty} t^{j} P(Y=j)=\sum_{j=0}^{\infty}\binom{r+j-1}{j} p^{r}(t q)^{j}=\left(\frac{p}{1-q t}\right)^{r} ; \\
\varphi_{Y}(t)=E\left(e^{t Y}\right)=\left(\frac{p}{1-q e^{t}}\right)^{r}, \quad \varphi_{X}(t)=E\left(e^{t X}\right)=e^{t r} E\left(e^{t Y}\right)=\left(\frac{p}{e^{-t}-q}\right)^{r} ; \\
\mu_{Y}=E(Y)=\frac{r q}{p}, \quad \mu_{X}=E(X)=\mu_{Y}+r=\frac{r}{p}, \quad \sigma_{X}^{2}=\operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{r q}{p^{2}} .
\end{gathered}
$$

3a. Geometric $(p)=$ Negative Binomial $(1, p)$.
4. $X=\operatorname{Gamma}(\alpha, \lambda)$, where $\alpha>0, \lambda>0$, if it has density

$$
f_{4}(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \quad \text { for } \quad x>0, \quad \text { and } \quad f_{4}(x)=0 \quad \text { otherwise. }
$$

Here $\Gamma(\alpha)$ denotes the Gamma function:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

which satisfies the properties

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha), \quad \Gamma(n+1)=n!, \quad \Gamma(1 / 2)=\sqrt{\pi} .
$$

We have

$$
\varphi_{4}(t)=E\left(e^{t X}\right)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}, \quad \mu_{4}=E(X)=\frac{\alpha}{\lambda}, \quad \sigma_{4}^{2}=\operatorname{Var}(X)=\frac{\alpha}{\lambda^{2}}
$$

4a. Exponential $(\lambda)=\operatorname{Gamma}(1, \lambda)$.
5. $X=\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ is related to $Y=\operatorname{Standard} \operatorname{Normal}=\operatorname{Normal}(0,1)$ by the formula $X=\mu+\sigma \cdot Y$. The corresponding densities

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}, \quad f_{X}(x)=\frac{1}{\sigma} f_{Y}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

We have

$$
\begin{aligned}
\varphi_{Y}(t) & =E\left(e^{t Y}\right)=e^{t^{2} / 2}, \quad \varphi_{X}(t)=E\left(e^{t X}\right)=\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right) \\
\mu_{Y} & =E(Y)=0, \quad \sigma_{Y}^{2}=\operatorname{Var}(Y)=1 ; \quad \mu_{X}=E(X)=\mu, \quad \sigma_{X}^{2}=\operatorname{Var}(X)=\sigma^{2} .
\end{aligned}
$$

