Math 5652: Introduction to Stochastic Processes: Spring 2014

Appendix C. Strong Law of Large Numbers.

The strong law of large numbers is formulated (without proof) in Sec. 3.1, Theorem 3.2 of the textbook [D]. In this note, we give a complete proof of this fact. For further information, see [F], Ch.7.

Proposition 1 (Markov's Inequality). Let $Y \geq 0$ be a random variable. Then

$$
\begin{equation*}
P(Y \geq a) \leq \frac{E(Y)}{a} \quad \text { for any constant } \quad a>0 \tag{1}
\end{equation*}
$$

Proof. For fixed $a=$ const >0, consider the event $A:=\{\omega \in \Omega: X(\omega) \geq a>0\}$ and its indicator

$$
I_{A}(\omega):= \begin{cases}1 & \text { if } \omega \in A \tag{2}\\ 0 & \text { otherwise } .\end{cases}
$$

Since $X \geq a I_{A}$, we have

$$
E(X) \geq a \cdot E\left(I_{A}\right)=a \cdot P(A)=a \cdot P(X \geq a),
$$

and (1) follows.
Proposition 2 (Chebyshev's's Inequality). Let X be a random variable with $\mu=E(X)$ and $\operatorname{Var}(X)<\infty$. Then

$$
\begin{equation*}
P(|X-\mu| \geq \varepsilon) \leq \frac{\operatorname{Var}(X)}{\varepsilon^{2}} \quad \text { for any constant } \quad \varepsilon>0 \tag{3}
\end{equation*}
$$

Proof. Set $Y:=|X-\mu|^{2}, a:=\varepsilon^{2}>0$. Then by Markov's inequality,

$$
P(|X-\mu| \geq \varepsilon)=P(Y \geq a) \leq \frac{E(Y)}{a}=\frac{\operatorname{Var}(X)}{\varepsilon^{2}} .
$$

Theorem 3 (Weak Law of Large Numbers). Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be independent identically distributed (i.i.d.) random variables with $\mu=E(X)$ and $\operatorname{Var}(X)<\infty$. Then the sample mean

$$
\overline{X_{n}}:=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \rightarrow \mu \quad \text { in probability as } \quad n \rightarrow \infty,
$$

i.e. for any constant $\varepsilon>0$,

$$
\begin{equation*}
P\left(\left|\overline{X_{n}}-\mu\right| \geq \varepsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{4}
\end{equation*}
$$

Proof. We have

$$
E\left(\overline{X_{n}}\right)=\frac{1}{n} \sum_{k=1}^{n} E\left(X_{k}\right)=\mu, \quad \operatorname{Var}\left(\overline{X_{n}}\right)=\frac{1}{n^{2}} \sum_{k=1}^{n} \operatorname{Var}\left(X_{k}\right)=\frac{\sigma^{2}}{n} .
$$

Therefore, by Chebyshev's Inequality,

$$
P\left(\left|\overline{X_{n}}-\mu\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(\overline{X_{n}}\right)}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Lemma 4 (Borel-Cantelli's Lemma). Let A_{1}, A_{2}, \ldots be a sequence of events such that $\sum P\left(A_{n}\right)<\infty$. Then with probability one only finitely many events A_{n} occur. In other words, the event

$$
\begin{equation*}
A:=\limsup _{n \rightarrow \infty} A_{n}:=\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{n}\right) \text { has probability } P(A)=0 . \tag{5}
\end{equation*}
$$

Proof. For every natural k,

$$
0 \leq P(A) \leq P\left(\bigcup_{n=k}^{\infty} A_{n}\right) \leq \sum_{n=k}^{\infty} P\left(A_{n}\right)
$$

Since $P(A)$ does not depend on k, and the right hand side converges to 0 as $k \rightarrow \infty$, we must have $P(A)=0$.

The Strong Law of Large Numbers (Theorem 7 below) together with two preparatory Theorems 5 and 6, are due to A.N. Kolmogorov.

Theorem 5 (Kolmogorov's Inequality). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with $E\left(X_{k}\right)=0$ and $\operatorname{Var}\left(X_{k}\right)=\sigma_{k}^{2}$ for all $k=1,2, \ldots, n$. Then $S_{k}:=X_{1}+X_{2}+\cdots+X_{k}$ for $k=1,2, \ldots, n$ satisfy

$$
\begin{equation*}
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq t a_{n}\right) \leq \frac{1}{t^{2}} \quad \text { for any constant } \quad t>0 \tag{6}
\end{equation*}
$$

where $a_{n}^{2}:=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}=\operatorname{Var}\left(S_{n}\right)=E\left(S_{n}^{2}\right)$.
Proof. Introduce the stopping time

$$
T:=\min \left\{k \geq 1:\left|S_{k}\right| \geq t a_{n}\right\} \quad \text { if } \quad \max _{1 \leq k \leq n}\left|S_{k}\right| \geq t a_{n},
$$

and $T=n$ otherwise. By Markov's inequality (1) with $Y:=S_{T}^{2}$ and $a:=t^{2} a_{n}^{2}$,

$$
\begin{equation*}
P\left(\left|S_{T}\right| \geq t a_{n}\right)=P\left(\left|S_{T}^{2}\right| \geq t^{2} a_{n}^{2}\right) \leq \frac{E\left(S_{T}^{2}\right)}{t^{2} a_{n}^{2}} \tag{7}
\end{equation*}
$$

We can write

$$
\begin{equation*}
E\left(S_{T}^{2}\right)=\sum_{k=1}^{n} E\left(I_{k} S_{k}^{2}\right) \quad \text { where } \quad I_{k}:=I_{\{T=k\}} \tag{8}
\end{equation*}
$$

Further

$$
\begin{equation*}
S_{n}^{2}=\left[S_{k}+\left(S_{n}-S_{k}\right)\right]^{2}=S_{k}^{2}+2 S_{k}\left(S_{n}-S_{k}\right)+\left(S_{n}-S_{k}\right)^{2} \tag{9}
\end{equation*}
$$

Since $I_{k} S_{k}$ and $S_{n}-S_{k}=X_{k+1}+\cdots+X_{n}$ are independent and $E\left(S_{n}-S_{k}\right)=0$, we obtain

$$
E\left(I_{k} S_{k}\left(S_{n}-S_{k}\right)\right)=E\left(I_{k} S_{k}\right) \cdot E\left(S_{n}-S_{k}\right)=0 \quad \text { for all } k
$$

Then from (9) it follows $E\left(I_{k} S_{n}^{2}\right) \geq E\left(I_{k} S_{k}^{2}\right)$ for $k=1,2, \ldots, n$. Together with (8), these imply

$$
E\left(S_{T}^{2}\right) \leq \sum_{k=1}^{n} E\left(I_{k} S_{n}^{2}\right)=E\left(S_{n}^{2}\right)=a_{n}^{2}
$$

and the desired inequality (6) follows from (7) by definition of T.

Theorem 6 (Kolmogorov's Test). Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be independent random variables with $E\left(X_{k}\right)=0$ and $\operatorname{Var}\left(X_{k}\right)=\sigma_{k}^{2}$ for all $k=1,2, \ldots, n, \ldots$, such that $\sum k^{-2} \sigma_{k}^{2}<\infty$. Then

$$
\begin{equation*}
\frac{S_{n}}{n}:=\frac{1}{n} \sum_{k=1}^{n} X_{k} \rightarrow 0 \quad \text { almost surely (a.s.), } \quad \text { i.e. } \quad P\left(\frac{S_{n}}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty\right)=1 \tag{10}
\end{equation*}
$$

Proof. Fix an arbitrary $\varepsilon>0$. For $m=0,1,2, \ldots$, consider the events

$$
A_{m}:=\left\{\max _{2^{m-1}<k \leq 2^{m}} \frac{\left|S_{k}\right|}{k} \geq \varepsilon\right\} \subset B_{m}:=\left\{\max _{1 \leq k \leq 2^{m}}\left|S_{k}\right| \geq 2^{m-1} \varepsilon\right\}
$$

We can apply Theorem 5 with $n=2^{m}$ and $t=2^{m-1} \varepsilon a_{n}^{-1}$. This gives us

$$
P\left(A_{m}\right) \leq P\left(B_{m}\right) \leq \frac{1}{t^{2}}=\frac{4 a_{n}^{2}}{\varepsilon^{2} n^{2}}
$$

which in turn implies

$$
\sum_{m=0}^{\infty} P\left(A_{m}\right) \leq \frac{4}{\varepsilon^{2}} \sum_{m=0}^{\infty} \frac{1}{4^{m}} \sum_{k=1}^{2^{m}} \sigma_{k}^{2}
$$

The right hand side can be considered as the double sum over all the integers $m \geq 0$ and $k \geq 1$ satisfying $1 \leq k \leq 2^{m}$. Changing the order of summation, we write

$$
\sum_{m=0}^{\infty} P\left(A_{m}\right) \leq \frac{4}{\varepsilon^{2}} \sum_{k=1}^{\infty} \sigma_{k}^{2} \sum_{m=m_{0}}^{\infty} \frac{1}{4^{m}}
$$

where $m_{0}=m_{0}(k)$ is the minimal integer m satisfying $k \leq 2^{m}$, so that $k \leq 2^{m_{0}}<2 k$. The sum of the geometric series

$$
\sum_{m=m_{0}}^{\infty} \frac{1}{4^{m}}=\frac{4}{3 \cdot 4^{m_{0}}} \leq \frac{4}{3 k^{2}}
$$

Hence

$$
\sum_{m=0}^{\infty} P\left(A_{m}\right) \leq \frac{16}{3 \varepsilon^{2}} \sum_{k=1}^{\infty} \frac{\sigma_{k}^{2}}{k^{2}}<\infty
$$

By Lemma 4, with probability one only finite number of A_{m} occurs, which means that

$$
P\left(\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{n} \leq \varepsilon\right\}=1
$$

Since $\varepsilon>0$ is arbitrary, the desired property (10) follows.
Theorem 7 (Strong Law of Large Numbers). Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.i.d. random variables with $E(|X|)<\infty$ and $\mu=E(X)$. Then

$$
\begin{equation*}
\overline{X_{n}}:=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \rightarrow \mu \quad \text { a.s. } \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

Proof. Replacing X_{k} by $X_{k}-\mu$ and $\overline{X_{n}}$ by $\overline{X_{n}}-\mu$, we reduce the proof to the case $\mu=0$. For $k=1,2, \ldots$, represent X_{k} in the form

$$
\begin{equation*}
X_{k}=U_{k}+V_{k}, \quad \text { where } \quad U_{k}:=I_{\left\{\left|X_{k}\right|<k\right\}} \cdot X_{k}, \quad V_{k}:=I_{\left\{\left|X_{k}\right| \geq k\right\}} \cdot X_{k} \tag{12}
\end{equation*}
$$

Denote $\mu_{k}:=E\left(U_{k}\right)$. Since $E\left(X_{k}\right)=0$, we have $E\left(V_{k}\right)=E\left(X_{k}-U_{k}\right)=-\mu_{k}$, and

$$
\left|\sum_{k=1}^{n} \mu_{k}\right|=\left|\sum_{k=1}^{n} E\left(V_{k}\right)\right| \leq \sum_{k=1}^{n} E\left(\left|V_{k}\right|\right)=\sum_{k=1}^{n} E\left(I_{\left\{\left|X_{k}\right| \geq k\right\}} \cdot\left|X_{k}\right|\right)
$$

Here distributions of X_{k} do not depend on k, so that the last expression can be rewritten as

$$
\sum_{k=1}^{n} E\left(I_{\{|X| \geq k\}} \cdot|X|\right)=E\left(\sum_{k=1}^{n} I_{\{|X| \geq k\}} \cdot|X|\right) \leq E(\min \{n,|X|\} \cdot|X|)
$$

By the Monotone Convergence Theorem in Real Analysis,

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{k=1}^{n} \mu_{k}\right| \leq \frac{1}{n} \cdot E(\min \{n,|X|\} \cdot|X|)=E\left(\min \left\{1, \frac{|X|}{n}\right\} \cdot|X|\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{13}
\end{equation*}
$$

Further, introduce the quantities

$$
c_{j}:=E\left(I_{\{j-1 \leq|X|<j\}} \cdot|X|\right) \quad \text { for } \quad j=1,2, \ldots
$$

Then

$$
\sigma_{k}^{2}:=\operatorname{Var}\left(U_{k}\right) \leq E\left(U_{k}^{2}\right)=E\left(I_{\{|X|<k\}} \cdot|X|^{2}\right)=\sum_{j=1}^{k} E\left(I_{\{j-1 \leq|X|<j\}} \cdot|X|^{2}\right) \leq \sum_{j=1}^{k} j c_{j}
$$

Note that

$$
\sum_{k=j}^{\infty} \frac{1}{k^{2}} \leq \sum_{k=j}^{\infty} \frac{2}{k(k+1)}=2 \cdot \sum_{k=j}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{2}{j} \quad \text { for } \quad j=1,2, \ldots
$$

Therefore,

$$
\sum_{k=1}^{\infty} \frac{\sigma_{k}^{2}}{k^{2}} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{j=1}^{k} j c_{j}=\sum_{1 \leq j \leq k} \frac{j c_{j}}{k^{2}}=\sum_{j=1}^{\infty} j c_{j} \sum_{k=j}^{\infty} \frac{1}{k^{2}} \leq 2 \cdot \sum_{j=1}^{\infty} c_{j}=2 \cdot E(|X|)<\infty
$$

By Theorem 6 applied to $U_{k}-\mu_{k}$ instead of X_{k}, we get

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left(U_{k}-\mu_{k}\right) \rightarrow 0 \quad \text { a.s } \quad \text { as } \quad n \rightarrow \infty \tag{14}
\end{equation*}
$$

In addition, we have

$$
\sum_{k=1}^{\infty} P\left(\left|X_{k}\right| \geq k\right)=\sum_{k=1}^{\infty} E\left(I_{\{|X| \geq k\}}\right)=E\left(\sum_{k=1}^{\infty} I_{\{|X| \geq k\}}\right) \leq E(|X|)<\infty
$$

By the Borel-Cantelli Lemma (Lemma 4), only finitely many events $\left\{\left|X_{k}\right| \geq k\right\}$ occur (a.s.). This means that in (12) $X_{k}=U_{k}$ except for finitely many indices k. In combination with (13) and (14), this implies the desired property (11):

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} U_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(U_{k}-\mu_{k}\right)=0 \quad \text { (a.s. }\right)
$$

Theorem is proved.

References

[D] Richard Durrett, Essentials of Stochastic Processes, 2nd Edition, Springer, 2012.
[F] William Feller, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley \& Sons, Inc., 1971.

