Homework #3 (due on Friday, April 17). 50 points are divided between problems 1–4. In your solutions, whether or not you are using a computer software, you need to justify each step.

#1. (10 points.) Solve Problem 4.4.8 (a) on p.135 of the textbook.

#2. (12 points.) Consider the matrix
\[
A = \begin{pmatrix}
-1 & -1 & 0 \\
0 & -4 & -1 \\
0 & 5 & 0
\end{pmatrix}.
\]

(a) Find eigenvalues and independent eigenvectors of \(A \).
(b) Find the real general solution of the system
\[
\frac{dx}{dt} = \begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.
\]
(c) Discuss stability of the equilibrium point \((0, 0, 0)^T\).

#3. (12 points.) Solve Problem 5.4.10(b,c) on p.167 of the textbook.

#4. (16 points.) For the system
\[
x'_1 = -2x_1 + x_2 + x_1^2 + x_1x_2,
\]
\[
x'_2 = x_1 - 2x_2 + x_2^2 + x_1x_2,
\]

(a) discuss the type and stability of the equilibrium point \((0, 0)\);
(b) find all other equilibrium points and discuss their type and stability;
(c) by introducing the function \(u(t) = x_1(t) + x_2(t) \), show that if \(x_1(0) + x_2(0) > 1 \), then the solution \((x_1(t), x_2(t))\) becomes unbounded as \(t \to t_0 \) for some \(t_0 > 0 \) (depending on \(x_1(0) + x_2(0) \)).