Solutions to Homework #2.

#1. (10 points.) Let a constant $p > 1$ and a vector $a = (a_1, a_2, \ldots, a_n)^T \in \mathbb{R}^n$ with components $a_j \geq 0$ be fixed. Find the maximum of the function

$$f(x) = f(x_1, x_2, \ldots, x_n) := (a, x) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$$

under the constraints

$$g(x) = g(x_1, x_2, \ldots, x_n) := x_1^p + x_2^p + \cdots + x_n^p = 1, \quad x_j \geq 0 \quad \text{for all} \quad j.$$

Solution. The constraints describe a bounded closed set (a compact) $K \subset \mathbb{R}^n$, hence the bounded continuous function $f(x)$ attains its maximum at some point $x = (x_1, x_2, \ldots, x_n)^T \in K$. First assume that $x_j > 0$ for all j, so that we have only one constraint $g(x) = 1$. As in Examples 2.3 and 2.4, from the relation $\nabla f = \lambda \nabla g$ it follows

$$a_j = \frac{\partial f}{\partial x_j} = \lambda \cdot \frac{\partial g}{\partial x_j} = \lambda p \cdot x_j^{p-1} \quad \text{for all} \quad j = 1, 2, \ldots, n. \quad (1.1)$$

It is convenient to introduce the notation for arbitrary $a \in \mathbb{R}^n$

$$||a||_q := \left(\sum_{j=1}^n |a_j|^q \right)^{1/q}, \quad (1.2)$$

where the given constant $p > 1$ and the new constant $q > 1$ are related as follows:

$$\frac{1}{p} + \frac{1}{q} = 1, \quad \text{i.e.} \quad q := \frac{p}{p-1} = 1 + \frac{1}{p-1} > 1. \quad (1.3)$$

Together with (1.1), these relations imply:

$$||a||_q^q = \sum_{j=1}^n a_j^q = (\lambda p)^q \cdot \sum_{j=1}^n x_j^{(p-1)q} = (\lambda p)^q \cdot \sum_{j=1}^n x_j^p = (\lambda p)^q,$$

$$\lambda p = ||a||_q, \quad x_j = \left(\frac{a_j}{\lambda p} \right)^{\frac{1}{p-1}} = ||a||_{q^{p-1}}^{\frac{1}{p-1}} \cdot a_j^{\frac{1}{p-1}},$$

$$f(x) = \sum_{j=1}^n a_j x_j = ||a||_q^{\frac{1}{p-1}} \cdot \sum_{j=1}^n a_j^{\frac{1}{p-1}} = ||a||_{q^{p-1}}^{\frac{1}{p-1}} \cdot ||a||_q^q = ||a||_q.$$
If we just drop $j \notin J$ from our consideration, i.e. consider only $j \in J$ in place of $j \in \{1, 2, \ldots, n\}$, then the corresponding value $f(x) = ||a||_q$ in (1.2) will be replaced by a similar expression, in which the sum is extended only over $j \in J$. Thus if we want to maximize the value of $f(x)$ we must restrict ourselves to $J := \{ j : a_j > 0 \}$. In any case, the answer $f(x) = ||a||_q$ remains the same.

Remark 1. The above solution was a demonstration of the method of Lagrange multipliers. There is a shorter way to do it based on Hölder’s inequality

\[
|(x, y)| \leq ||x||_p \cdot ||y||_q \quad \text{for all} \quad x, y \in \mathbb{R}^n.
\] (HE)

Here we use notations in (1.2), (1.3). In particular, the Cauchy–Schwarz inequality appears as a particular case $p = q = 2$. By linearity, the proof of (HE) is reduced to the case $||x||_p = ||y||_q = 1$, and then it follows from the elementary inequality

\[
ab \leq \frac{a^p}{p} + \frac{b^q}{q} \quad \text{for all} \quad a \geq 0, b \geq 0.
\]

#2. (12 points.) Find the maximum of the function

\[
y = f(x_1, x_2, x_3) = \sin x_1 \cdot \sin x_2 \cdot \sin x_3
\]

over the set $\{g(x_1, x_2, x_3) = x_1 + x_2 + x_3 = \pi/2, \ x_1 > 0, \ x_2 > 0, \ x_3 > 0\}$.

Solution. From the Lagrange equality $\nabla f = \lambda \nabla g$ it follows

\[
\cos x_1 \cdot \sin x_2 \cdot \sin x_3 = \sin x_1 \cdot \cos x_2 \cdot \sin x_3 = \sin x_1 \cdot \sin x_2 \cdot \cos x_3 = \lambda.
\]

Then

\[
\frac{f(x_1, x_2, x_3)}{\lambda} = \tan x_1 = \tan x_2 = \tan x_3.
\]

From the given restriction it follows that x_1, x_2, x_3 belong to $(0, \pi/2)$. Since $\tan x$ is a one-to-one function on this interval, we must have $x_1 = x_2 = x_3 = \pi/6$, with the maximal value

\[
f_{max} = f(\pi/6, \pi/6, \pi/6) = \sin^3(\pi/6) = 1/8.
\]

#3. (10 points.) Using Newton’s iteration method, find the roots of the equation $x \ln x = 1$ correct to six decimal places. Start with the initial point $x_0 = 1$, and write all the successive approximations x_1, x_2, \ldots.

Solution. Following p.63 in the textbook, we have $F(x) = x \ln x - 1 = 0$. By Newton’s iteration method, the successive approximations are defined as follows:

\[
x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} = x_n - \frac{x_n \ln x_n - 1}{\ln x_n + 1} = \frac{x_n + 1}{\ln x_n + 1}.
\]

Starting with $x_0 = 1$, we get

\[
x_1 = 2,
\]
\[
x_2 \approx 1.771\,848\,3,
\]
\[
x_3 \approx 1.763\,236\,2,
\]
\[
x_4 \approx 1.763\,222\,8,
\]
\[
x_5 \approx 1.763\,222\,8.
\]
#4. (12 points.) In the system
\[
\begin{align*}
 x_1 - 2x_2 & \leq 1 \\
 x_1 - x_2 & \leq 3 \\
 x_1 + 2x_2 & \leq 5 \\
 x_1 + x_2 & = 4,
\end{align*}
\]
determine which restriction are **binding** and which are **redundant**.

Answer. The restrictions (1), (3), and (4) are binding. The restriction (2) is redundant. One can either use the ERO method, or observe that
\[
(1), (3) \implies x_1 \leq 3, \quad (3), (4) \implies x_2 \leq 1,
\]
and then from (4) it follows \(x_1 = 3, \ x_2 = 1\).

#5. (16 points.) Using simplex method, find the maximum of the objective function
\[
y = f(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 - 4x_5
\]
over the set
\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 + 3x_4 - 7x_5 & = 10, \\
 x_1 + 3x_2 + x_3 - 6x_5 & = 7, \\
 x_1 - 3x_2 + x_3 - 6x_4 & = 1, \\
 x_i & \geq 0 \text{ for } i = 1, 2, 3, 4, 5;
\end{align*}
\]
starting from the initial corner point \(x^{(0)} = (2, 1, 2, 0, 0)\). Write down all the intermediate systems (or their matrices) and the corresponding corner points.

Solution. There is more than one way to approach this problem. The initial table for this system with the initial corner point \(x^{(0)} = (2, 1, 2, 0, 0)^T\) is
\[
T = \begin{bmatrix}
1 & -1 & -1 & -1 & 4 & 0 \\
0 & 1 & 2 & 3 & 3 & -7 & 10 \\
0 & 1 & 3 & 1 & 0 & -6 & 7 \\
0 & 1 & -3 & 1 & -6 & 0 & 1
\end{bmatrix}.
\]

Here the basic variables are \(x_j, \ j \in J := \{1, 2, 3\}\). In order to resolve this system with respect to these variable, we replace the columns \(A_0, A_1, A_2, \text{ and } A_3\) by standard unit vectors (see pages 12-13 in Notes), we need to multiply \(T\) by the inverse matrix composed of these columns. We will get an equivalent system with the same corner point \(x^{(0)}\):

\[
T^{(0)} = \begin{bmatrix}
1 & -1 & -1 & -1 \\
0 & 1 & 2 & 3 \\
0 & 1 & 3 & 1 \\
0 & 1 & -3 & 1
\end{bmatrix}^{-1} \cdot T = \begin{bmatrix}
1 & -1/2 & 2/3 & 1/3 \\
0 & 0 & 1/6 & -1/6 \\
0 & 1/2 & -5/12 & -1/12 \\
0 & 1 & -3 & 1
\end{bmatrix} \cdot T.
\]
One can take as a pivot element either \(a_{24} = 1 \), or \(a_{34} = 2 \). If we choose \(a_{24} = 1 \), then the next iteration produces the table

\[
T^{(1)} = \begin{bmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1
\end{bmatrix}^{-1} \cdot T^{(0)} = \begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1
\end{bmatrix} \cdot T^{(0)}
\]

\[
= \begin{bmatrix}
1 & 0 & 3 & 0 & 0 & -3 & 8 \\
0 & 1 & 5 & 0 & 0 & -7 & 7 \\
0 & 0 & 1 & 0 & 1 & -1 & 1 \\
0 & 0 & -2 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

For the corresponding corner point \(x^{(1)} \), the new non-basic variables \(x_2 = x_5 = 0 \), therefore,

\[
x^{(1)} = (7, 0, 0, 1, 0)^T.
\]

Now we can take as a pivot element \(a_{35} = 1 \). Then

\[
T^{(2)} = \begin{bmatrix}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & -7 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}^{-1} \cdot T^{(1)} = \begin{bmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix} \cdot T^{(1)}
\]

\[
= \begin{bmatrix}
1 & 0 & -3 & 3 & 0 & 0 & 8 \\
0 & 1 & -9 & 7 & 0 & 0 & 7 \\
0 & 0 & -1 & 1 & 1 & 0 & 1 \\
0 & 0 & -2 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

with the corner point

\[
x^{(2)} = (7, 0, 0, 1, 0)^T.
\]

For \(k = 2 \), we have \(c_k = c_2 = 3 > 0 \), and the set \(P := \{i : a_{i2} > 0\} \) is empty. This is the case (II), in which \(y = f(x) \) is unbounded and can take arbitrarily large values. According to (28) on page 10 in Notes, we can choose

\[
J = \{1, 4, 5\}, \quad t = x_k = x_2 > 0, \quad \text{and} \quad x_j = 0 \quad \text{for all} \quad j \notin J, \quad \text{i.e.} \quad x_3 = 0.
\]

Then the system is reduced to the following one:

\[
\begin{align*}
x_1 - 9x_2 &= 7, \\
x_2 + x_4 &= 1, \\
-2x_2 + x_5 &= 0.
\end{align*}
\]

This non-homogeneous system has a solution \(x = x^{(2)} \), and the corresponding homogeneous system, with \(x_2 = t > 0 \) has solutions \(x = t \cdot (9, 1, 0, 1, 2)^T \). Then

\[
x = x(t) = (7, 0, 0, 1, 0)^T + t \cdot (9, 1, 0, 1, 2)^T \quad \text{for} \quad t > 0
\]

satisfies all the restrictions, and \(y = f(x(t)) = 8 + 3t \to +\infty \) as \(t \to +\infty \).