Appendix A. Exponential Matrix.

Definition 1. For $n \times n$–matrix A, the exponential matrix function
\[
e^{tA} = I + \frac{t}{1!}A + \frac{t^2}{2!}A^2 + \cdots = \sum_{k=0}^{\infty} \frac{t^k}{k!}A^k.
\]

Lemma 1. $X = X(t) = e^{tA}$ is the unique solution of the Cauchy problem
\[
X' = \frac{dX}{dt} = AX, \quad X(0) = I.
\]

Proof. It is easy to see that
\[
\frac{d}{dt} e^{tA} = A + \frac{t}{1!}A^2 + \cdots = Ae^{tA},
\]
so that $X = e^{tA}$ is a solution of (2). Moreover, we can treat $n \times n$–matrix function X as a vector functions with values in \mathbb{R}^{n^2} (or \mathbb{C}^{n^2}). We only need to rewrite the matrix equation $X' = AX$ in the vector form $X' = BX$ with a $n^2 \times n^2$–matrix B. Then the uniqueness for the Cauchy problem in the vector form implies the uniqueness for the problem (2).

Definition 2. If $AV = \lambda V$, for some vector $V \neq 0$, then λ is an eigenvalue of A, and V is an eigenvector corresponding to λ.

We have $AV = \lambda V \iff (A - \lambda I)V = 0$. The last system has nontrivial solutions $V \neq 0 \iff |A - \lambda I| = 0$. We introduce the characteristic polynomial of A by the formula $p(\lambda) = |\lambda I - A|$. Now we can conclude:

(i) The eigenvalues of A are roots of the characteristic equation
\[
p(\lambda) = |\lambda I - A| = 0.
\]

(ii) For each eigenvalue λ, the corresponding eigenvectors V are nontrivial solutions of the system
\[
(A - \lambda I)V = 0.
\]

Lemma 2. Let A be a constant $n \times n$ matrix, and let $AV = \lambda V$ for some vector V. Then the matrix function $U = U(t) = e^{\lambda t} V$ satisfies $U' = AU$.

Proof. $U'(t) = (e^{\lambda t})' V = e^{\lambda t} \lambda V = e^{\lambda t} AV = AU(t)$.

Lemma 3. For distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ of the matrix A, the corresponding eigenvectors V_1, V_2, \cdots, V_m are linearly independent.

Proof. For $m = 1$, this is trivial:
\[
V_1 \neq 0, \quad c_1 V_1 = 0 \quad \Rightarrow \quad c_1 = 0.
\]
Now suppose this statement is true for some $m = k$, i.e. V_1, V_2, \cdots, V_k are linearly independent. We will prove that it remains true for $m = k + 1$, i.e. the equality
\[
c_1 V_1 + \cdots + c_k V_k + c_{k+1} V_{k+1} = 0
\]
\[A-1\]
holds only in case $c_1 = \ldots = c_k = c_{k+1} = 0$. Multiplying (5) by the matrix A and using the equalities $AV_j = \lambda_j V_j$, we get

$$c_1 \lambda_1 V_1 + \cdots + c_k \lambda_k V_k + c_{k+1} \lambda_{k+1} V_{k+1} = 0.$$

Now subtract (5) multiplied by λ_{k+1}. This gives us

$$c_1 (\lambda_1 - \lambda_{k+1}) V_1 + \cdots + c_k (\lambda_k - \lambda_{k+1}) V_k = 0.$$

By our assumption, V_1, V_2, \ldots, V_k are linearly independent. Therefore,

$$c_1 (\lambda_1 - \lambda_{k+1}) = \cdots = c_k (\lambda_k - \lambda_{k+1}) = 0.$$

Since all the eigenvalues are distinct, this implies $c_1 = \cdots = c_k = 0$. Now from (5) it follows $c_{k+1} = 0$. This proves our statement for $m = k + 1$, and by induction, it is true for arbitrary m. □

Another way of computation e^{tA} is based on the following famous result.

Theorem 1 (Cayley-Hamilton). Let $A = (a_{ij})$ be a $n \times n$ matrix, and let $p(\lambda) = |\lambda I - A|$. Then $p(A) = 0$.

Proof. The coefficients of $p(\lambda)$ depend on the entries a_{ij}, and the entries of the resultant matrix $p(A)$ are polynomials of a_{ij}. The statement $p(A) = 0$ means these polynomials are reduced to 0 as a result of algebraic operations, which are based on same rules in both real and complex cases. Thus without loss of generality, we will assume that A is a real matrix.

(i) Suppose the matrix A has n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. By Lemma 3, the corresponding eigenvectors V_1, V_2, \ldots, V_n are linearly independent and therefore they compose a basis in \mathbb{R}^n. We have

$$AV_i = \lambda_i V_i \implies A^k V_i = \lambda_i^k V_i \implies p(A)V_i = p(\lambda_i)V_i = 0$$

for any $i = 1, 2, \ldots, n$. An arbitrary vector $V \in \mathbb{R}^n$ can be represented in the form $V = \sum c_i V_i$. Therefore, we have

$$p(A)V = \sum c_i p(A)V_i = 0 \text{ for all } V \in \mathbb{R}^n \implies p(A) = 0.$$

(ii) For real ε, consider the characteristic polynomial of $\varepsilon A + B$,

$$p_\varepsilon(\lambda) = |\lambda I - \varepsilon A - B|,$$

where $B = \text{diag} \{1, 2, \ldots, n\}$.

Notice that $p_0(\lambda) = (\lambda - 1)(\lambda - 2) \cdots (\lambda - n)$ has different signs at the ends of each of n segments $[k - \frac{1}{2}, k + \frac{1}{2}]$, $k = 1, 2, \ldots, n$. Since $p_\varepsilon(\lambda)$ is continuous with respect to ε, it satisfies the same property for $|\varepsilon| < \varepsilon_0$, provided $\varepsilon_0 > 0$ is small enough. For such ε, the polynomial $p_\varepsilon(\lambda)$ has a root in each of intervals $(k - \frac{1}{2}, k + \frac{1}{2})$, $k = 1, 2, \ldots, n$, thus all n roots are distinct.

We have proved that the matrix $\varepsilon A + B$ have n distinct eigenvalues if $|\varepsilon| < \varepsilon_0$. Multiplying this matrix by $t = \frac{1}{2}$, we obtain that the matrix $A + tB$ has n distinct eigenvalues if $t > t_0 = 1/\varepsilon_0$. In other words, for fixed $t > t_0$, the polynomial $p(\lambda, t) = |\lambda I - A - tB|$ has n distinct roots.

(iii) From (i) it follows $p(A + tB, t) = 0$ for all $t > t_0$. Since the entries of the matrix $p(A + tB, t)$ are polynomials with respect to t, we have $p(A + tB, t) = 0$ for all t. In particular, taking $t = 0$, we obtain the desired equality $p(A) = p(A, 0) = 0$. □
Let $\lambda_1, \lambda_2, \cdots, \lambda_m$ denote all the distinct eigenvalues of a matrix A (real and complex). Then we can write the characteristic polynomial of A in the form

$$p(\lambda) = |\lambda I - A| = \prod_{k=1}^{m} (\lambda - \lambda_k)^{r_k}, \quad (6)$$

where r_k is the multiplicity of λ_k. We have

$$\frac{1}{p(\lambda)} = \sum_{k=1}^{m} \frac{r_k}{\prod_{j=k}^{m} (\lambda - \lambda_j)^{r_j}} = \sum_{k=1}^{m} \frac{a_k(\lambda)}{(\lambda - \lambda_k)^{r_k}}, \quad (7)$$

where $a_{kj} = \text{const}$, and $a_k(\lambda)$ is a polynomial of degree $\leq r_k - 1$ for each k. Therefore,

$$1 = \sum_{k=1}^{m} a_k(\lambda)p_k(\lambda), \quad I = \sum_{k=1}^{m} a_k(A)p_k(A), \quad (8)$$

where

$$p_k(\lambda) = \frac{p(\lambda)}{(\lambda - \lambda_k)^{r_k}} = \prod_{j\neq k}(\lambda - \lambda_j)^{r_j}. \quad (9)$$

Theorem 2. Let $\lambda_1, \lambda_2, \cdots, \lambda_m$ be all the distinct eigenvalues of a matrix A with the characteristic polynomial $p(\lambda)$ in (6). Then

$$e^{tA} = \sum_{k=1}^{m} e^{\lambda_k t}a_k(A)p_k(A)\sum_{j=0}^{r_k-1} \frac{t^j}{j!} (A - \lambda_k I)^j, \quad (10)$$

where a_k are polynomials of degree $\leq r_k - 1$, which are defined from the decomposition (7), and p_k are polynomials in (9).

First we prove a lemma, which allows us to use the equalities

$$e^{tA} = e^{tM}e^{t(A - A)} = e^{M}e^{t(A - \lambda A)}. \quad (11)$$

Lemma 4. Let A and B be $n \times n$ matrices satisfying $AB = BA$. Then

$$e^{tA}e^{tB} \equiv e^{t(A+B)}.$$

Proof of Lemma. We have

$$AB = BA \implies A^kB = BA^k \implies e^{tA}B = Be^{tA}.$$

Therefore, the matrix function $X(t) = e^{tA}e^{tB}$ satisfies

$$X' = (e^{tA})'e^{tB} + e^{tA}(e^{tB})' = Ae^{tA}e^{tB} + Be^{tA}e^{tB} = (A + B)X, \quad X(0) = I.$$

By Lemma 1, we have $X(t) \equiv e^{t(A+B)}$. \hfill \Box
Proof of Theorem 2. Using the equalities (8) and (11) we get

\[e^{tA} = \sum_{k=1}^{m} a_k(A)p_k(A)e^{tA} = \sum_{k=1}^{m} e^{\lambda_k t} a_k(A)p_k(A)e^{t(A-\lambda_k I)}. \]

(12)

Since \(p_k(A)(A - \lambda_k I)^{r_k} = p(A) = 0, \)

\[p_k(A)e^{t(A-\lambda_k I)} = p_k(A)\sum_{j=0}^{\infty} \frac{t^j}{j!}(A - \lambda_k I)^j = p_k(A)\sum_{j=0}^{r_k-1} \frac{t^j}{j!}(A - \lambda_k I)^j. \]

Together with (12), this gives us the equality (10).

Example 1. Consider the matrix \(A = \begin{pmatrix} -1 & 1 & -2 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix}. \) We have

\[p(\lambda) = |\lambda I - A| = (\lambda + 1)^2(\lambda - 1) \implies \]

\(\lambda_1 = -1, \quad r_1 = 2, \quad \lambda_2 = 1, \quad r_2 = 1, \quad p_1(\lambda) = \lambda - 1, \quad p_2(\lambda) = (\lambda + 1)^2; \)

\[\frac{1}{p(\lambda)} = \frac{1}{(\lambda + 1)^2(\lambda - 1)} = \frac{1}{4} \left(\frac{1}{\lambda - 1} - \frac{\lambda + 3}{(\lambda + 1)^2} \right) \implies a_1(\lambda) = -\frac{1}{4}(\lambda + 3), \quad a_2(\lambda) = \frac{1}{4}. \]

By (10), we have

\[e^{tA} = -\frac{1}{4} e^{-t}(A + 3I)(A - I)[I + t(A + I)] + \frac{1}{4} e^{t}(A + I)^2. \]

Finally,

\[\frac{1}{4}(A + I)^2 = \frac{1}{4} \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \implies \]

\[-\frac{1}{4}(A + 3I)(A - I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \implies \]

\[e^{tA} = e^{-t} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} + te^{-t} \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + e^t \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}. \]