Problem 1. Consider Legendre polynomials

\[L_n(x) := c_n \cdot [(x^2 - 1)^n]^{(n)}, \quad \text{where} \quad c_n := \frac{1}{2^n \cdot n!}, \quad n = 0, 1, 2, \ldots \tag{1} \]

(a). Show that

\[\int_{-1}^{1} L_m L_n \, dx = 0 \quad \text{for} \quad m \neq n. \]

(b). Prove the identities

\[(n + 1)L_{n+1}(x) = (2n + 1)x L_n(x) - n L_{n-1}(x) \quad \text{for} \quad n = 1, 2, \ldots. \tag{2} \]

Proof. (a). Without loss of generality, we can assume that \(m > n \). Note that the points \(x = \pm 1 \) are zeros of order \(m \) of \((x^2 - 1)^m = (x - 1)^m(x + 1)^m \). Therefore, all derivatives \([(x^2 - 1)^n]^{(k)} \) for \(k < m - 1 \) vanish at \(x = \pm 1 \). Moreover, since \(L_n \) is a polynomial of degree \(n < m \), we also have \(L_n^{(m)} = 0 \). Integrating by parts \(m \) times, we get the desired orthogonality of \(L_m \) and \(L_n \) for \(m \neq n \):

\[
\int_{-1}^{1} L_m L_n \, dx = c_m \int_{-1}^{1} [(x^2 - 1)^m]^{(m)} L_n \, dx = (-1)^m c_m \int_{-1}^{1} (x^2 - 1)^m L_n^{(m)} \, dx = 0.
\]

(b). We will derive this relation from a few basic properties of polynomials \(L_n \).

(i). \(L_m \) is orthogonal to every polynomial \(P_n \) of degree \(n < m \).

Indeed, the previous argument works with \(P_n \) in place of \(L_n \).

(ii). \(xL_n \) is orthogonal to every polynomial \(P_k \) of degree \(k \leq n - 2 \).

Indeed, the orthogonality condition

\[\int_{-1}^{1} xL_n P_k \, dx = 0 \]

is the same as orthogonality of \(L_n \) to polynomial \(xP_k \) of degree \(k + 1 \leq n - 1 \), which is true because of (i).

(iii). \(L_n \) contain only even powers of \(x \) for even \(n \), and only odd powers of \(x \) for odd \(n \).

This follows from the fact that \((x^2 - 1)^n\) contains only even powers of \(x \). The properties (i)–(iii) imply

(iv). \(xL_n = aL_{n+1} + bL_{n-1} \), where \(a \) and \(b \) are constants (depending on \(n \)).

In order to find these constants, we need two more relations.

(v). \(L_n(1) = 1 \) for every \(n \), hence \(a + b = 1 \).

Indeed, using Leibniz formula for derivative of product with \(f := (x + 1)^n \) and \(g := (x - 1)^n \), we get (because only \(k = 0 \) produces nonzero \(g^{(n-k)}(1) \)):

\[L_n(1) = c_n (fg)^{(n)}(1) = c_n \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(1) g^{(n-k)}(1) = c_n 2^n n! = 1. \]

(vi).

\[L_n(x) = \frac{(2n)!}{2^n (n!)^2} \cdot x^n + \text{lower powers of } x. \]

Here the coefficient of \(x^n \) comes from \((x^2)^{(n)} = 2n(2n-1) \cdots (n+1)x^n = \frac{(2n)!}{n!} \cdot x^n.\]
Comparing the coefficients of \(x^{n+1}\) in (iv), we finally obtain
\[
\frac{(2n)!}{2^n(n!)^2} = a \cdot \frac{(2n + 2)!}{2^{n+1}((n + 1)!)^2}, \quad \text{and} \quad a = \frac{2(n + 1)^2}{(2n + 2)(2n + 1)} = \frac{n + 1}{2n + 1}, \quad b = 1 - a = \frac{n}{2n + 1}.
\]
The relation (iv) with these values of \(a\) and \(b\) is equivalent to (2).

Remark. The equality (1) is known as Rodrigues’ formula and (2) – as Bonnet’s recursion formula. Polynomials \(L_n\) can be defined in a number of different ways, e.g. by orthogonalization of \(1, x, x^2, \ldots\) subject to restriction \(L_n(1) = 1\).

Problem 2. Find the minimum of
\[
f(c_0, c_1, c_2) := \int_{-1}^{1} (x^3 - c_0 - c_1 x - c_2 x^2)^2 \, dx \quad \text{over} \quad c_0, c_1, c_2 \in \mathbb{R}.
\]

Solution. Using (2), one can easily get:
\[
L_0 = 1, \quad L_1 = x, \quad L_2 = \frac{1}{2} \cdot (3x^2 - 1), \quad L_3 = \frac{1}{2} \cdot (5x^3 - 3x).
\]
We can write
\[
x^3 - c_0 - c_1 x - c_2 x^2 = \frac{2}{5} \cdot L_3 + P_2,
\]
where \(P_2\) is a polynomial of degree at most 2. Since \(L_3\) is orthogonal to \(P_2\), the integral
\[
\int_{-1}^{1} (x^3 - c_0 - c_1 x - c_2 x^2)^2 \, dx = \int_{-1}^{1} \left(\frac{2}{5} \cdot L_3\right)^2 \, dx + \int_{-1}^{1} P_2^2 \, dx
\]
is minimal when \(P_2 = 0\), i.e. \(c_0 = 0, c_1 = 3/5, c_2 = 0\). The corresponding minimal value is
\[
\int_{-1}^{1} \left(\frac{2}{5} \cdot L_3\right)^2 \, dx = 2 \int_{0}^{1} \left(x^3 - \frac{3}{5} \cdot x\right)^2 \, dx = 2 \int_{0}^{1} \left(x^6 - \frac{6}{5} \cdot x^4 + \frac{9}{25} \cdot x^2\right) \, dx = 2 \cdot \left(\frac{1}{7} - \frac{6}{25} + \frac{3}{25}\right) = 8/175.
\]

Remark. The previous calculation can be made even shorter if we use (for \(n = 3\)) the equality
\[
\int_{-1}^{1} L_n^2 \, dx = \frac{2}{2n + 1}.
\]
Indeed, as in the previous solution of Problem 1(a),
\[
\int_{-1}^{1} L_n^2 \, dx = (-1)^n c_n^2 \int_{-1}^{1} (x^2 - 1)^n L_n^{(n)} \, dx = c_n^2 (2n)! \int_{-1}^{1} (1 - x^2)^n \, dx.
\]
By substitution
\[
x = -1 + 2t, \quad 1 + x = 2t, \quad 1 - x = 2(1 - t), \quad dx = 2dt \quad \text{for} \quad 0 \leq t \leq 1,
\]

2
the last integral is reduced to
\[\int_{-1}^{1} (1 - x^2)^n \, dx = 2^{2n+1} \int_{0}^{1} t^n (1 - t)^n \, dt = 2^{2n+1} B(n + 1, n + 1) = \frac{2^{2n+1} \Gamma^2(n + 1)}{\Gamma(2n + 2)} = \frac{2^{2n+1} (n!)^2}{(2n + 1)!}. \]

After cancelation, we arrive at (3).

Problem 3. Find the limit
\[\lim_{n \to \infty} n \cdot \left[\left(1 + \frac{1}{n}\right)^n - e \right]. \]

Solution. We can write
\[
\begin{align*}
n \cdot \left[\left(1 + \frac{1}{n}\right)^n - e \right] &= n \cdot \left[e^{n \ln \left(1 + \frac{1}{n}\right)} - e \right] = n \cdot \left[e^{n \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)} - e \right] \\
&= en \cdot \left[e^{-\frac{1}{2n} + o\left(\frac{1}{n}\right)} - 1 \right] = en \cdot \left(-\frac{1}{2n} + o\left(\frac{1}{n}\right) \right) \to -\frac{e}{2} \quad \text{as} \quad n \to \infty.
\end{align*}
\]

Therefore, the answer is \(-e/2\).

Problem 4. Consider the functions
\[
\Phi(x) := \int_{0}^{x} e^{-t^2} \, dt, \quad F(x) := \Phi^2(x), \quad \text{and} \quad G(x) := \int_{0}^{1} \frac{e^{-\left(1+t^2\right)x^2} \, dt}{1 + t^2}.
\]

(a). Show that \(F + G \equiv C = \text{const.}\)

(b). Find the value of \(C\).

Solution. (a). It suffices to show that \(F' + G' = 0\). We have
\[
F'(x) = 2\Phi' \Phi(x) = 2e^{-x^2} \int_{0}^{x} e^{-t^2} \, dt.
\]

Further, since the integral function in \(G(x)\) is smooth with respect to \(x, t\), we get
\[
G'(x) = \int_{0}^{1} \frac{\partial}{\partial x} \left[e^{-\left(1+t^2\right)x^2} \right] \, dt = -2x \int_{0}^{1} e^{-\left(1+t^2\right)x^2} \, dt.
\]

By substitution \(y = xt, dy = xdt\), we arrive at the desired claim
\[
G'(x) = -2e^{-x^2} \int_{0}^{x} e^{-y^2} \, dy = -F'(x), \quad (F + G)'(x) = 0, \quad \text{and} \quad F + G \equiv C = \text{const.}
\]

(b). We just take \(x = 0\):
\[
C = F(0) + G(0) = 0 + \int_{0}^{1} \frac{dt}{1 + t^2} = \arctan 1 = \frac{\pi}{4}.
\]
Remark. This problem provides an alternative proof of a famous equality

\[\int_{-\infty}^{\infty} e^{-t^2} dt = 2 \cdot \lim_{x \to +\infty} \Phi(x) = 2 \cdot \lim_{x \to +\infty} \sqrt{C - G(x)} = 2\sqrt{C} = \sqrt{\pi}. \]

Problem 5. Find the generating function

\[F(t, x) := \sum_{n=0}^{\infty} \frac{t^n H_n(x)}{n!} \quad \text{for the Hermite polynomials} \quad H_n(x) := (-1)^n e^{x^2} \left(e^{-x^2}\right)^{(n)}. \]

Solution. Using Taylor’s expansion

\[f(x + h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} h^n \quad \text{with} \quad f(x) = e^{-x^2}, \ h = -t, \]

we get

\[F(t, x) = e^{x^2} \cdot \frac{(e^{-x^2})^{(n)}}{n!} \cdot (-t)^n = e^{x^2} \cdot e^{-(x-t)^2} = e^{2tx-t^2}. \]

Problem 6. Simplify the expression

\[f(x) = \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{2^2 x^3}{1+x^4} + \cdots + \frac{2^n x^{2n-1}}{1+x^{2^n}} + \cdots \quad \text{for} \quad |x| < 1. \]

Solution. One of possible ways is to find the coefficients \(a_n\) in the power series

\[f(x) = \sum_{n=0}^{\infty} a_n x^n = \frac{1}{1+x} + 2x \cdot f(x^2) = \sum_{n=0}^{\infty} (-1)^n x^n + 2 \sum_{k=0}^{\infty} a_k x^{2k+1}. \]

Comparing the coefficients, we see that \(a_{2k} = 1\) for \(k = 0, 1, 2, \ldots\), and also \(a_{2k+1} = -1 + 2a_k = 1\) by easy induction. Thus \(a_n = 1\) for all \(n\), and

\[f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{for} \quad |x| < 1. \]

Remark. This equality follows by differentiation of the series

\[\ln(1+x) + \ln(1+x^2) + \ln(1+x^4) + \cdots + \ln(1+x^{2^n}) + \cdots = -\ln(1-x). \]

In turn, the last equality follows from

\[
\begin{align*}
\ln(1-x) + \ln(1+x) + \ln(1+x^2) + \ln(1+x^4) + \cdots + \ln(1+x^{2^n}) \\
&= \ln(1-x^2) + \ln(1+x^2) + \ln(1+x^4) + \cdots + \ln(1+x^{2^n}) \\
&= \ln(1-x^4) + \ln(1+x^4) + \cdots + \ln(1+x^{2^n}) \\
&= \ln(1-x^{2^n+1}) \rightarrow 0 \quad \text{as} \quad n \to \infty \quad \text{for} \quad |x| < 1.
\end{align*}
\]