Homework #4 (due on October 31):
Sec. 3.4: #4; Sec. 3.5: #2, 10; Sec. 3.6: #6, 10; Sec. 3.7: #2, 4.

Sec. 3.4: #4. Suppose that X and Y have a continuous joint distribution for which the joint p.d.f. is defined as follows:

$$f(x, y) = \begin{cases} cy^2 & \text{for } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

Determine (a) the value of the constant c; (b) $P(X + Y > 2)$; (c) $P(Y < 1/2)$; (d) $P(X \leq 1)$; (e) $P(X = 3Y)$.

Sec. 3.5: #2. Suppose that X and Y have a discrete joint distribution for which the joint p.f. is defined as follows:

$$f(x, y) = \begin{cases} \frac{1}{30}(x + y) & \text{for } x = 0, 1, 2 \text{ and } y = 0, 1, 2, 3, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Determine the marginal p.f.’s of X and Y.
(b) Are X and Y independent?

Sec. 3.5: #10. Suppose that a point (X, Y) is chosen at random from the circle S defined as follows:

$$S = \{(x, y) : x^2 + y^2 \leq 1\}.$$

(a) Determine the joint p.d.f. of X and Y, the marginal p.d.f. of X, and the marginal p.d.f. of Y.
(b) Are X and Y independent?

Sec. 3.6: #6. Suppose that the joint p.d.f. of two random variables X and Y is as follows:

$$f(x, y) = \begin{cases} c \sin x & \text{for } 0 \leq x \leq \pi/2 \text{ and } 0 \leq y \leq 3, \\ 0 & \text{otherwise.} \end{cases}$$

Determine (a) the conditional p.d.f. of Y for every given value of X, and (b) $P(1 < Y < 2 \mid X = 0.73)$.

1
Sec. 3.6: #10. In a large collection of coins, the probability X that a head will be obtained when a coin is tossed varies from one coin to another and the distribution of X in the collection is specified by the following p.d.f.:

$$f_1(x) = \begin{cases}
6x(1-x) & \text{for } 0 < x < 1, \\
0 & \text{otherwise.}
\end{cases}$$

Suppose that a coin is selected at random from the collection and tossed once, and that a head is obtained. Determine the conditional p.d.f. of X for this coin.

Sec. 3.7: #2. Suppose that three random variables X_1, X_2, and X_3 have a mixed joint distribution with p.f./p.d.f.

$$f(x_1, x_2, x_3) = \begin{cases}
cx_1^{1+x_2+x_3}(1-x_1)^{3-x_2-x_3} & \text{if } 0 < x_1 < 1 \\
0 & \text{and } x_2, x_3 \in \{0, 1\}, \\
& \text{otherwise.}
\end{cases}$$

(Notice that X_1 has a continuous distribution and X_2 and X_3 have discrete distributions.) Determine (a) the value of the constant c; (b) the marginal joint p.f. of X_2 and X_3; (c) the conditional p.d.f. of X_1 given $X_2 = 1$ and $X_3 = 1$.

Sec. 3.7: #4. Suppose that a point (X_1, X_2, X_3) is chosen at random, that is, in accordance with a uniform p.d.f., from the following set S:

$$S = \{(x_1, x_2, x_3) : 0 \leq x_i \leq 1 \text{ for } i = 1, 2, 3\}.$$ Determine

a. $P\left[\left(X_1 - \frac{1}{2}\right)^2 + \left(X_2 - \frac{1}{2}\right)^2 + \left(X_3 - \frac{1}{2}\right)^2 \leq \frac{1}{4}\right]$,

b. $P(X_1^2 + X_2^2 + X_3^2 \leq 1)$.

2