Appendix A.
Exponential and Logarithmic Functions

For fixed b > 1, the function b* was defined in Exercise 6 on p.22 in the textbook “Principles
of Mathematical Analysis” by W. Rudin. It satisfies b* > 0, and
(E1). b"t¥ =b*bY for real z,y.
In particular, b° = 1, which implies
1="="V =Y = b¥=0" =

(E2). b" Y =0"b"Y =0b"/bY for real z,v.

(E3). (b)Y = b for real z,y.

We divide the proof of this property into a few steps.
Step 1. y =n is natural. Then by iterating of (E1),

(bx)’l’b — b.l'bx ... bl’ — b$’rb.
————

n times

Step 2. y = —n, where n is natural. Since (b*)"(0*)™" = 1, we get
T\ —"N T\N -1 nr\— —nx
)" = (7)) = )t =

Together with the obvious case y = 0, the cases 1 and 2 cover all integers .

Step 3. y = 1/n, where n is natural. We have
(e¥/mn = pne/n = —  (b%)Y" = b/,
Step 4. y = m/n — a rational number. Here m is integer and n is natural. Then
e (D K S
Step 5. x >0 and y is real. Then by := b* > 1, and similarly to Ex. 6(c,d) on p.22,

(b°)Y = b{ = supb] =supb™ = sup bj = b,

r<y r<y r1<zy
Here the sup is taken over rational numbers r or 7.

The assumption b > 1 was needed in order to have an increasing function b*, which is defined
as the sup of 0" over rational numbers r < z. If 0 < b < 1, then b= > 1, and we can define

b= (b))

For completeness, we also set 17 = 1. Then the function b* is defined for all b > 0 and real z,
and it satisfies (E1)-(E3). For example, if 0 < b < 1, then the property (E3) can be verified as
follows:

() = (7)) = o) = b,
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Definition (compare with Ex.7 on p.22). Let b > 0, b # 1, and y > 0 be fixed. The
logarithm of y to the base b,

x =log,y - the unique solution of b* =y, ie. &Y=y for y>0.

The natural logarithm of y

1\"
Iny :=logy :=log,y, where e:= lim (1 + —> =2.71828....

n—o0 n

The logarithmic function log, y can be easily expressed in terms of the function Iny:
(LO). log,y =Iny/Inb. Indeed,

blny/lnb _ (elnb)lny/lnb _ elnb-lny/lnb _ elny =y,

and (LO0) holds true by definition.

The following properties (L1)—(L3) for Iny correspond to (E1)—(E3) for e*. They are true
for log, y as well.

(L1). In(y1y2) =Iny; +Inys for y; >0, yo > 0.
This equality follows from

elny1+lny2 — elnylelnyg = y1ys = eln(ylyQ)_

(L2). In(y1/y2) =Iny; —Iny, for y; >0, yo > 0.
The proof is quite similar to the previous one.

(L3). In(y*) = alny for y > 0 and real a.
Indeed, using (E3), we obtain

ealny — (elny)a — ya — eln(y“)
which is equivalent to (L3).
One an also prove (L2) by combining (L1) and (L3) with a = —1:
I(y1/y2) =m(yr - 95 ') = () + In(y, ') = Inys — Inyp.

Using the properties (E) and (L), we also get a new property
(E4). (ab)* =a"b” for a > 0, b > 0 and real z.
It suffices to check that the logarithms of both sides coincide, and this is the case:

In ((ab)*) =z -In(ab) = - Ina+ z - Inb = In(a”) + In(b*) = In(a”b").



The base e of the natural logarithm satisfies some special properties.
Theorem. The sequences

n+1

1\" 1
an::(l—i——) e =271828..., bn::(1+—> (e as n — oo.
n n
Proof. We will use an elementary inequality, which is easily proved by induction:
(1+h)">14nh forall h>-1 and n=123,....
Using this inequality for n > 2 and h := —1/n? we get
n — n—1 n
an :<n+1> (n 1) :(1_i> on (1_£>. n _ 1
A1 n n n? n—1 n?) n—1

ie. a,_1 < a, for all n > 2. Similarly,

v

2

bnfl B ( n >n< n )n+1_< n )TL+1 n—1
b,  \n—1 n+1 \n2-1 n

1 ntl n—1 n+1 n—1
= (1 ) > (1 ) =1
(+n2—1 n +n2—1 n

Y

ie. b,_1>0b, for all n > 2.

Note that since n cannot have nontrivial common factors with n — 1 or n + 1, we actually
have strict inequalities “>" instead of “>" in the above expressions:

a=a1<ar<az<- - <a,<b,<--+<by<by<b =4.

By Theorem 3.19, there exists lim a,,, which we denote by e. We also have

1 1
lim b, = lim <l—l——>an: lim <l—l——>- lima, =1-e=ce.
n—00 n—00 n n—0o00 n n—o00

Corollary. We have

L <1n(1+1)<l forall n=1,23 ...
n+1 n n

Proof. Since Iny is an increasing function for y > 0, from the previous theorem it follows
Ina, <Ine=1<1Inb,. Using the property (L3) of Iny, we get

1 1
n-ln<1+—> <1<(n—i—1)-ln(1+—>,
n n

and the desired inequalities follow.



