
Appendix A.
Exponential and Logarithmic Functions

For fixed b > 1, the function bx was defined in Exercise 6 on p.22 in the textbook “Principles
of Mathematical Analysis” by W. Rudin. It satisfies bx > 0, and

(E1). bx+y = bxby for real x, y.
In particular, b0 = 1, which implies

1 = b0 = by+(−y) = byb−y =⇒ b−y = (by)−1 =⇒

(E2). bx−y = bxb−y = bx/by for real x, y.
(E3). (bx)y = bxy for real x, y.
We divide the proof of this property into a few steps.

Step 1. y = n is natural. Then by iterating of (E1),

(bx)n = bxbx · · · bx︸ ︷︷ ︸
n times

= bxn.

Step 2. y = −n, where n is natural. Since (bx)n(bx)−n = 1, we get

(bx)−n =
(
(bx)n

)−1
= (bnx)−1 = b−nx.

Together with the obvious case y = 0, the cases 1 and 2 cover all integers y.

Step 3. y = 1/n, where n is natural. We have

(ex/n)n = bnx/n = bx =⇒ (bx)1/n = bx/n.

Step 4. y = m/n – a rational number. Here m is integer and n is natural. Then

(bx)y = (bx)m/n =
(
(bx)1/n

)m
= (bx/n)m = emx/n = exy.

Step 5. x > 0 and y is real. Then b1 := bx > 1, and similarly to Ex. 6(c,d) on p.22,

(bx)y = by1 = sup
r≤y

br1 = sup
r≤y

brx = sup
r1≤xy

br1 = bxy.

Here the sup is taken over rational numbers r or r1.

The assumption b > 1 was needed in order to have an increasing function bx, which is defined
as the sup of br over rational numbers r ≤ x. If 0 < b < 1, then b−1 > 1, and we can define

bx := (b−1)−x.

For completeness, we also set 1x ≡ 1. Then the function bx is defined for all b > 0 and real x,
and it satisfies (E1)–(E3). For example, if 0 < b < 1, then the property (E3) can be verified as
follows:

(bx)y =
(
(b−1)−x

)y
= (b−1)−xy = bxy.
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Definition (compare with Ex.7 on p.22). Let b > 0, b ̸= 1, and y > 0 be fixed. The
logarithm of y to the base b,

x = logb y - the unique solution of bx = y, i.e. blogb y ≡ y for y > 0.

The natural logarithm of y

ln y := log y := loge y, where e := lim
n→∞

(
1 +

1

n

)n

= 2.71828 . . . .

The logarithmic function logb y can be easily expressed in terms of the function ln y:

(L0). logb y = ln y/ ln b. Indeed,

bln y/ ln b = (eln b)ln y/ ln b = eln b·ln y/ ln b = eln y = y,

and (L0) holds true by definition.

The following properties (L1)–(L3) for ln y correspond to (E1)–(E3) for ex. They are true
for logb y as well.

(L1). ln(y1y2) = ln y1 + ln y2 for y1 > 0, y2 > 0.
This equality follows from

eln y1+ln y2 = eln y1eln y2 = y1y2 = eln(y1y2).

(L2). ln(y1/y2) = ln y1 − ln y2 for y1 > 0, y2 > 0.
The proof is quite similar to the previous one.

(L3). ln(ya) = a ln y for y > 0 and real a.
Indeed, using (E3), we obtain

ea ln y = (eln y)a = ya = eln(y
a),

which is equivalent to (L3).

One an also prove (L2) by combining (L1) and (L3) with a = −1:

ln(y1/y2) = ln(y1 · y−1
2 ) = ln(y1) + ln(y−1

2 ) = ln y1 − ln y2.

Using the properties (E) and (L), we also get a new property

(E4). (ab)x = axbx for a > 0, b > 0 and real x.

It suffices to check that the logarithms of both sides coincide, and this is the case:

ln
(
(ab)x

)
= x · ln(ab) = x · ln a+ x · ln b = ln(ax) + ln(bx) = ln(axbx).
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The base e of the natural logarithm satisfies some special properties.

Theorem. The sequences

an :=

(
1 +

1

n

)n

↗ e := 2.71828 . . . , bn :=

(
1 +

1

n

)n+1

↘ e as n → ∞.

Proof. We will use an elementary inequality, which is easily proved by induction:

(1 + h)n ≥ 1 + nh for all h ≥ −1 and n = 1, 2, 3, . . . .

Using this inequality for n ≥ 2 and h := −1/n2, we get

an
an−1

=
(n+ 1

n

)n(n− 1

n

)n−1

=
(
1− 1

n2

)n

· n

n− 1
≥

(
1− n

n2

)
· n

n− 1
= 1,

i.e. an−1 ≤ an for all n ≥ 2. Similarly,

bn−1

bn
=

( n

n− 1

)n( n

n+ 1

)n+1

=
( n2

n2 − 1

)n+1

· n− 1

n

=
(
1 +

1

n2 − 1

)n+1

· n− 1

n
≥

(
1 +

n+ 1

n2 − 1

)
· n− 1

n
= 1,

i.e. bn−1 ≥ bn for all n ≥ 2.

Note that since n cannot have nontrivial common factors with n − 1 or n + 1, we actually
have strict inequalities “>” instead of “≥” in the above expressions:

a = a1 < a2 < a3 < · · · < an < bn < · · · < b3 < b2 < b1 = 4.

By Theorem 3.19, there exists lim an, which we denote by e. We also have

lim
n→∞

bn = lim
n→∞

(
1 +

1

n

)
an = lim

n→∞

(
1 +

1

n

)
· lim
n→∞

an = 1 · e = e.

Corollary. We have

1

n+ 1
< ln

(
1 +

1

n

)
<

1

n
for all n = 1, 2, 3, . . . .

Proof. Since ln y is an increasing function for y > 0, from the previous theorem it follows
ln an < ln e = 1 < ln bn. Using the property (L3) of ln y, we get

n · ln
(
1 +

1

n

)
< 1 < (n+ 1) · ln

(
1 +

1

n

)
,

and the desired inequalities follow.
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