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Appendix C. Strong Law of Large Numbers.

The strong law of large numbers is formulated (without proof) in Sec. 3.1, Theorem 3.2 of the textbook
[D]. In this note, we give a complete proof of this fact. For further information, see [F], Ch.7.

Proposition 1 (Markov’s Inequality). Let Y ≥ 0 be a random variable. Then

P (Y ≥ a) ≤ E(Y )

a
for any constant a > 0. (1)

Proof. For fixed a = const > 0, consider the event A := {ω ∈ Ω : X(ω) ≥ a > 0} and its indicator

IA(ω) :=

{
1 if ω ∈ A,

0 otherwise.
(2)

Since X ≥ a IA, we have
E(X) ≥ a · E(IA) = a · P (A) = a · P (X ≥ a),

and (1) follows.

Proposition 2 (Chebyshev’s’s Inequality). Let X be a random variable with µ = E(X) and Var (X) < ∞.
Then

P (|X − µ| ≥ ε) ≤ Var (X)

ε2
for any constant ε > 0. (3)

Proof. Set Y := |X − µ|2, a := ε2 > 0. Then by Markov’s inequality,

P (|X − µ| ≥ ε) = P (Y ≥ a) ≤ E(Y )

a
=

Var (X)

ε2
.

Theorem 3 (Weak Law of Large Numbers). Let X1, X2, . . . , Xn, . . . be independent identically distributed
(i.i.d.) random variables with µ = E(X) and Var (X) < ∞. Then the sample mean

Xn :=
1

n
(X1 +X2 + · · ·+Xn) → µ in probability as n → ∞,

i.e. for any constant ε > 0,
P (|Xn − µ| ≥ ε) → 0 as n → ∞. (4)

Proof. We have

E(Xn) =
1

n

n∑
k=1

E(Xk) = µ, Var (Xn) =
1

n2

n∑
k=1

Var (Xk) =
σ2

n
.

Therefore, by Chebyshev’s Inequality,

P (|Xn − µ| ≥ ε) ≤ Var (Xn)

ε2
=

σ2

nε2
→ 0 as n → ∞.
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Lemma 4 (Borel-Cantelli’s Lemma). Let A1, A2, . . . be a sequence of events such that
∑

P (An) < ∞.
Then with probability one only finitely many events An occur. In other words, the event

A := lim sup
n→∞

An :=

( ∞∩
k=1

∞∪
n=k

An

)
has probability P (A) = 0. (5)

Proof. For every natural k,

0 ≤ P (A) ≤ P

( ∞∪
n=k

An

)
≤

∞∑
n=k

P (An).

Since P (A) does not depend on k, and the right hand side converges to 0 as k → ∞, we must have
P (A) = 0.

The Strong Law of Large Numbers (Theorem 7 below) together with two preparatory Theorems 5 and
6, are due to A.N. Kolmogorov.

Theorem 5 (Kolmogorov’s Inequality). Let X1, X2, . . . , Xn be independent random variables with
E(Xk) = 0 and Var (Xk) = σ2

k for all k = 1, 2, . . . , n. Then Sk := X1 +X2 + · · · +Xk for k = 1, 2, . . . , n
satisfy

P
(

max
1≤k≤n

|Sk| ≥ tan

)
≤ 1

t2
for any constant t > 0, (6)

where a2n := σ2
1 + σ2

2 + · · ·+ σ2
n = Var (Sn) = E(S2

n).

Proof. Introduce the stopping time

T := min{k ≥ 1 : |Sk| ≥ tan} if max
1≤k≤n

|Sk| ≥ tan,

and T = n otherwise. By Markov’s inequality (1) with Y := S2
T and a := t2a2n,

P (|ST | ≥ tan) = P (|S2
T | ≥ t2a2n) ≤

E(S2
T )

t2a2n
(7)

We can write

E(S2
T ) =

n∑
k=1

E(IkS
2
k) where Ik := I{T=k}. (8)

Further
S2
n =

[
Sk + (Sn − Sk)

]2
= S2

k + 2Sk (Sn − Sk) + (Sn − Sk)
2. (9)

Since IkSk and Sn − Sk = Xk+1 + · · ·+Xn are independent and E(Sn − Sk) = 0, we obtain

E
(
IkSk (Sn − Sk)

)
= E(IkSk) · E(Sn − Sk) = 0 for all k.

Then from (9) it follows E(IkS
2
n) ≥ E(IkS

2
k) for k = 1, 2, . . . , n. Together with (8), these imply

E(S2
T ) ≤

n∑
k=1

E(IkS
2
n) = E(S2

n) = a2n,

and the desired inequality (6) follows from (7) by definition of T .
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Theorem 6 (Kolmogorov’s Test). Let X1, X2, . . . , Xn, . . . be independent random variables with E(Xk) = 0
and Var (Xk) = σ2

k for all k = 1, 2, . . . , n, . . ., such that
∑

k−2σ2
k < ∞. Then

Sn

n
:=

1

n

n∑
k=1

Xk → 0 almost surely (a.s.), i.e. P

(
Sn

n
→ 0 as n → ∞

)
= 1. (10)

Proof. Fix an arbitrary ε > 0. For m = 0, 1, 2, . . ., consider the events

Am :=

{
max

2m−1<k≤2m

|Sk|
k

≥ ε

}
⊂ Bm :=

{
max

1≤k≤2m
|Sk| ≥ 2m−1ε

}
.

We can apply Theorem 5 with n = 2m and t = 2m−1εa−1
n . This gives us

P (Am) ≤ P (Bm) ≤ 1

t2
=

4a2n
ε2n2

,

which in turn implies
∞∑

m=0

P (Am) ≤ 4

ε2

∞∑
m=0

1

4m

2m∑
k=1

σ2
k.

The right hand side can be considered as the double sum over all the integers m ≥ 0 and k ≥ 1 satisfying
1 ≤ k ≤ 2m. Changing the order of summation, we write

∞∑
m=0

P (Am) ≤ 4

ε2

∞∑
k=1

σ2
k

∞∑
m=m0

1

4m
,

where m0 = m0(k) is the minimal integer m satisfying k ≤ 2m, so that k ≤ 2m0 < 2k. The sum of the
geometric series

∞∑
m=m0

1

4m
=

4

3 · 4m0
≤ 4

3k2
.

Hence
∞∑

m=0

P (Am) ≤ 16

3ε2

∞∑
k=1

σ2
k

k2
< ∞.

By Lemma 4, with probability one only finite number of Am occurs, which means that

P

(
lim sup
n→∞

|Sn|
n

≤ ε

}
= 1.

Since ε > 0 is arbitrary, the desired property (10) follows.

Theorem 7 (Strong Law of Large Numbers). Let X1, X2, . . . , Xn, . . . be i.i.d. random variables with
E(|X|) < ∞ and µ = E(X). Then

Xn :=
1

n
(X1 + · · ·+Xn) → µ a.s. as n → ∞. (11)

Proof. Replacing Xk by Xk−µ and Xn by Xn−µ, we reduce the proof to the case µ = 0. For k = 1, 2, . . .,
represent Xk in the form

Xk = Uk + Vk, where Uk := I{|Xk|<k} ·Xk, Vk := I{|Xk|≥k} ·Xk. (12)
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Denote µk := E(Uk). Since E(Xk) = 0, we have E(Vk) = E(Xk − Uk) = −µk, and∣∣∣∣ n∑
k=1

µk

∣∣∣∣ = ∣∣∣∣ n∑
k=1

E(Vk)

∣∣∣∣ ≤ n∑
k=1

E
(
|Vk|

)
=

n∑
k=1

E
(
I{|Xk|≥k} · |Xk|

)
.

Here distributions of Xk do not depend on k, so that the last expression can be rewritten as
n∑

k=1

E
(
I{|X|≥k} · |X|

)
= E

( n∑
k=1

I{|X|≥k} · |X|
)

≤ E
(
min{n, |X|} · |X|

)
.

By the Monotone Convergence Theorem in Real Analysis,∣∣∣∣ 1n
n∑

k=1

µk

∣∣∣∣ ≤ 1

n
· E

(
min{n, |X|} · |X|

)
= E

(
min

{
1,

|X|
n

}
· |X|

)
→ 0 as n → ∞. (13)

Further, introduce the quantities

cj := E
(
I{j−1≤|X|<j} · |X|

)
for j = 1, 2, . . . .

Then

σ2
k := Var (Uk) ≤ E(U2

k ) = E
(
I{|X|<k} · |X|2

)
=

k∑
j=1

E
(
I{j−1≤|X|<j} · |X|2

)
≤

k∑
j=1

j cj .

Note that
∞∑
k=j

1

k2
≤

∞∑
k=j

2

k(k + 1)
= 2 ·

∞∑
k=j

(1
k
− 1

k + 1

)
=

2

j
for j = 1, 2, . . . .

Therefore,

∞∑
k=1

σ2
k

k2
≤

∞∑
k=1

1

k2

k∑
j=1

j cj =
∑

1≤j≤k

j cj
k2

=
∞∑
j=1

j cj

∞∑
k=j

1

k2
≤ 2 ·

∞∑
j=1

cj = 2 · E(|X|) < ∞.

By Theorem 6 applied to Uk − µk instead of Xk, we get

1

n

n∑
k=1

(Uk − µk) → 0 a.s as n → ∞. (14)

In addition, we have
∞∑
k=1

P
(
|Xk| ≥ k

)
=

∞∑
k=1

E
(
I{|X|≥k}

)
= E

( ∞∑
k=1

I{|X|≥k}

)
≤ E(|X|) < ∞.

By the Borel-Cantelli Lemma (Lemma 4), only finitely many events {|Xk| ≥ k} occur (a.s.). This means
that in (12) Xk = Uk except for finitely many indices k. In combination with (13) and (14), this implies
the desired property (11):

lim
n→∞

1

n

n∑
k=1

Xk = lim
n→∞

1

n

n∑
k=1

Uk = lim
n→∞

1

n

n∑
k=1

(Uk − µk) = 0 (a.s.) .

Theorem is proved.
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