Math 5652: Introduction to Stochastic Processes: Spring 2014
Appendix C. Strong Law of Large Numbers.

The strong law of large numbers is formulated (without proof) in Sec. 3.1, Theorem 3.2 of the textbook
[D]. In this note, we give a complete proof of this fact. For further information, see [F], Ch.7.

Proposition 1 (Markov’s Inequality). Let Y > 0 be a random variable. Then

EY)

P(Y >a) <
(EDES

for any constant a > 0. (1)

Proof. For fixed a = const > 0, consider the event A :={w € Q: X(w) > a > 0} and its indicator

uwwzF soeed ©)

0 otherwise.

Since X > aly, we have
E(X)>a-E(Iy)=a-P(A)=a-P(X >a),

and (1) follows. N

Proposition 2 (Chebyshev’s’s Inequality). Let X be a random variable with n = E(X) and Var (X) < co.

Then
Var (X)

P(X —pu| >¢) 5 for any constant & > 0. (3)
€

Proof. Set Y :=|X — p|?, a:=¢€? > 0. Then by Markov’s inequality,

E(Y) Var(X)
a e

P(X —p|>e)=PY >a) <

O]

Theorem 3 (Weak Law of Large Numbers). Let X1, Xa,..., Xy, ... be independent identically distributed
(i.i.d.) random variables with p = E(X) and Var (X) < co. Then the sample mean

— 1
X, =— (X7 +Xo+---+ X,) > u in probability as n — oo,
n

i.e. for any constant € > 0,

P(| X, —pu|>e)—=0 as n—oo. (4)
Proof. We have
1 n L n o2
- kZ:: =L, Var (X,,) ;::

Therefore, by Chebyshev’s Inequality,

Vi 2
%:U——m as n — oo.

P(| X, —pl>¢e) < 2
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Lemma 4 (Borel-Cantelli’s Lemma). Let Aj, Aa,... be a sequence of events such that > P(A,) < oo.
Then with probability one only finitely many events A, occur. In other words, the event

A :=limsup 4, := < m U An> has probability P(A) = 0. (5)

n—eo k=1n=Fk

Proof. For every natural k,
0< P(A) < P< U An) <> P(Ap).
n=~k n=k

Since P(A) does not depend on k, and the right hand side converges to 0 as k — oo, we must have
P(A) =0. u

The Strong Law of Large Numbers (Theorem 7 below) together with two preparatory Theorems 5 and
6, are due to A.N. Kolmogorov.

Theorem 5 (Kolmogorov’s Inequality). Let X1, Xo, ..., X, be independent random variables with
E(Xy) =0 and Var (Xy) = 0} for allk=1,2,...,n. Then Sy == X1+ Xo+ -+ Xy fork=1,2,....,n
satisfy

1
t2
where a? :=0? +03+---+02 = Var(S,) = E(S?).

n

P( max |Sk| > tan> < for any constant ¢ > 0, (6)
1<k<n

Proof. Introduce the stopping time

T :=min{k > 1: > ¢ if > ¢
min{k > |Sk| > tan,} i 11%113§n|5k| > tay,

and T = n otherwise. By Markov’s inequality (1) with Y := S§% and a := t%a2,

E(S7)

P(ISr| > tan) = P(S3] > Pa3) < ] 7
n
We can write .
E(S}) =Y E(IxS;) where I :=Igp_p). (8)
k=1
Further
S =[Sk + (Sn = S0)]” = SE + 25k (Su = St) + (S — Si)*. (9)
Since I1 S and S,, — Sk, = Xg41 + -+ - + X, are independent and E(S,, — Si) = 0, we obtain
E(IxSk (Sn — Sk)) = E(IxSk) - E(Sp, — Sg) =0 for all k.
Then from (9) it follows E(I;S2) > E(IS?) for k = 1,2,...,n. Together with (8), these imply
B(St) <) B(IxS7) = E(S}) = aj,
k=1
and the desired inequality (6) follows from (7) by definition of 7. O



Theorem 6 (Kolmogorov’s Test). Let X1, Xo,..., Xy, ... be independent random variables with E(Xy) = 0
and Var (Xj) = 0,% forallk=1,2,...,n,..., such that Zk_20']3 < 0. Then

Sh 1 S,
— == ZXk — 0 almost surely (a.s.), i.e. P<n =0 as n— oo) =1. (10)
n n i~ n

Proof. Fix an arbitrary € > 0. For m =0,1,2,..., consider the events

Am;:{ max ’5;;’>5}C3m::{ max |Sk]>2m1}

2m—1f<Lo2m 1<k<2m

We can apply Theorem 5 with n = 2™ and t = 2™ !ea!. This gives us

1 4a?
P(A,) < P(Bp) < 2= 527”72’
which in turn implies
131 &
2
Z P(An) < 5 > 5 Dok
m=0 k=1

The right hand side can be considered as the double sum over all the integers m > 0 and k£ > 1 satisfying
1 < k < 2™. Changing the order of summation, we write

[e'S) 4 [e%S) ) [%S) 1
D PAR) < 5> 0k Y
m=0 k=1 m=mg

where my = mg(k) is the minimal integer m satisfying & < 2™, so that & < 20 < 2k. The sum of the
geometric series

1 4 4
E i < —
4gm - 3.4mo — 327
m=mg

Hence
o 2
9k
Z P(An) < 3 2 k:2 < 0.
By Lemma 4, with probability one only finite number of Am occurs, which means that

S
P<limsup’n’ < 5} =1.

n—00 n
Since € > 0 is arbitrary, the desired property (10) follows. O

Theorem 7 (Strong Law of Large Numbers). Let X1, Xo,..., X,,... be i.i.d. random wvariables with
E(]X|) < 00 and p = E(X). Then

— 1
Xp=—(X1+--+X,) - p as. as n— oo. (11)
n

Proof. Replacing X, by X;, — u and X,, by X,, — p, we reduce the proof to the case = 0. For k =1,2, ...,
represent X in the form

Xk = Uk + Vk, Where Uk = I{‘XkKk} . Xk, Vk = I{|Xk\2k} . Xk (12)
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Denote py := E(Uy). Since E(X}) = 0, we have E(V}) = E(Xy — Uy) = —ug, and

Z ZE Ve)| < ZH:E(\VH) = Zn:E<I{Xk>k} X))

k=1
Here distributions of X} do not depend on k, so that the last expression can be rewritten as

n n
> B (T - 1X]) = E(ZI{M} : \X\) < BE(min{n, | X[} - [X]).
k=1 k=1
By the Monotone Convergence Theorem in Real Analysis,

1 n
52%

k=1

§;-E(min{n,X|}-]X|):E<min{1,‘Xn’}-|X|>—>() as n—oo.  (13)

Further, introduce the quantities

Cj 1= E(I{jflg\XKj} : ‘X‘) for j = 1,2, ceen

Then i i
oy == Var (Uy) < B(UR) = E(I{|X\<k} : |X|2> = ZE<I{j71§\X|<]’} : \X\2> <> i
j=1 =
Note that
S ) = /1 1 2
27327:2.20_7):,_ for j=1,2,....
2 ) )
= k Py k(k+1) oy k k+1 j
Therefore,
0 2
je;
Z% Zkzzm > chfzkz <2 ZCJ—Z B(1X]) < oc.
=1 j= 1<]<k’
By Theorem 6 applied to Up — ux instead of Xj, we get
1 n
- Z(Uk —pp) —0 as as n— oo. (14)

k=1
In addition, we have

> P(Xkl 2 k) = 3 B(Iyxpen) = E(ZI{IXZk}> < B(|X]) < o0
k=1 k=1 k=1

By the Borel-Cantelli Lemma (Lemma 4), only finitely many events {|X| > k} occur (a.s.). This means
that in (12) X} = Uy except for finitely many indices k. In combination with (13) and (14), this implies
the desired property (11):

n

R R 1
Ji D Xe= lm D U= lim S (U - ) =0 (as)
k=1 k=1 k=1
Theorem is proved. ]
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