
MATH 4512. Differential Equations with Applications.
Final Exam. May 11, 2016. Problems and Solutions

Problem 1. Let p(t) be a continuous function such that 0 < p(t) < 1 for all real t, and let y(t) be
a solution of the equation

y′′ + p(t)y = 0.

Suppose that y(t1) = y(t2) = 0 at some points t1 < t2. Show that t2 − t1 ≥ π, unless y(t) ≡ 0.

Proof. Suppose otherwise, i.e. y(t1) = y(t2) = 0 at some points t1 < t2 with 0 < t2 − t1 < π.
In a simple case y ≡ 0 on (t1, t2), we also have y′ ≡ 0 on (t1, t2), and by uniqueness of solutions, y(t) = 0
for all real t.

In the remaining case, when y(t) is not identically 0, we can assume that y(t) > 0 at some point
t ∈ (t1, t2), because otherwise we just replace y by −y. Pick a point a such that [t1, t2] lies strictly inside
of (a, a+ π), so that the function sin(t− a) is strictly positive on [t1, t2]. Then the function

f(t) =
y(t)

sin(t− a)
satisfies f(t1) = f(t2) = 0, and 0 < M = max

[t1,t2]
f = f(t0)

at some point t0 ∈ (t1, t2). Further, the function

g(t) = y(t)−M sin(t− a) ≤ 0 on [t1, t2], and g(t0) = 0.

Geometrically, this simply means that we choose an arc of the graph of M sin(x−a), which touches the
graph of y(t) from above at a point t0 ∈ (t1, t2). Note that

y(t0) = g(t0) +M sin(t0 − a) = M sin(t0 − a) > 0.

Since g(t) attains its maximum at an interior point t0, we get

0 ≥ g′′(t0) = y′′(t0) +M sin(t0 − a) = (1− p)y(t0) > 0.

This contradiction proves that t2 − t1 ≥ π.

Problem 2. Find the general solution of the equation

(y − 1)y′′ = 2(y′)2, where y = y(t).

Solution. Using substitution y′(t) = z(y), we get

y′′(t) =
dz(y)

dt
=

dz

dy
· dy
dt

= z′z. (y − 1)z′z = 2z2.

A simple case (a) z ≡ 0 corresponds to solutions y = C = const. In the remaining case (b) z ̸≡ 0, we
can cancel both sides by z, which implies

(y − 1) · dz
dy

= 2z,
dz

z
=

2dy

y − 1
, ln |z| = 2 ln |y − 1|+ C,

dy

dt
= z = C1(y − 1)2, (y − 1)−2 = C1dt, (y − 1)−1 = C1t+ C2.
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In the last equality, we’ve changed the sign of C1. Finally, we get y = 1+(C1t+C2)
−1. This is “almost”

the final answer, because the case (a) is contained here for C1 = 0, with an exception of y = 1, which
formally corresponds to C2 = ∞.

Problem 3. Find the general solution of the differential equation

y′′ + 4y′ + 5y = e−2t sin t.

Solution. The characteristic equation χ(r) = r2 + 4r + 5 = 0 = (r + 2)2 + 1 = 0 has zeros
r1,2 = −2 ± i. Note that er1x = e−2x(cosx + i sinx), hence e−2x sinx = Im

(
er1x

)
. Therefore, one can

find a particular solution of the given equation in the form Y = ImZ, where Z is a particular solution
of

Lz = (D2 + 4D + 5)z = z′′ + 4z′ + 5z = er1x.

Since r1 = −2+ i is a root of multiplicity 1, one can find Z in the form Z = Axer1x. Using the general
formula

χ(D)
(
erxf

)
= erxχ(D + r)f with χ(D) = (D − r1)(D − r2),

we get

LZ = χ(D)
(
Axer1x

)
= er1xχ(D + r1)(Ax) = er1xD(D + r1 − r2)(Ax) = er1x · 2Ai,

A =
1

2i
= − i

2
, Z = − i

2
· xer1x =

1

2
· xe−2x(sinx− i cosx), Y = ImZ = −1

2
· xe−2x cosx.

Finally, general solution

y(x) = e−2x(C1 cosx+ C2 sinx)−
1

2
· xe−2x cosx.

Problem 4. Use Laplace transforms to solve the equation

y′′ + y = sin t+ (sin t) ∗ y(t), where (sin t) ∗ y(t) =
t∫

0

sin(t− τ) y(τ) dτ,

with the initial conditions y(0) = 0, y′(0) = 1.

Solution. Denote Y (s) = L{y} – the Laplace transform of y(t). Using the equalities

L{f ∗ g} = L{f} · L{g}, L{sin t} =
1

s2 + 1
, L{y′′} = sL{y} − sy(0)− y′(0),

we derive

(s2 + 1)Y (s)− 1 =
1

s2 + 1
+

1

s2 + 1
· Y (s).

This equality can be simplified as follows:[
(s2 + 1)2 − 1

]
Y (s) = s2 + 2, (s4 + 2s2)Y (s) = s2 + 2, Y (s) = s−2,

which corresponds to y(t) = t.
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Problem 5. Find the general solution of the system

dx1
dt

= x2 + tan2 t− 1,
dx2
dt

= −x1 + tan t.

Solution. Differentiate the second equality and substitute x′1 from the first equality:

x′′2 = (−x1 + tan t)′ = −x′1 +
1

cos2 t
= −x2 − tan2 t+ 1 +

1

cos2 t
= −x2 + 2.

The general solution of x′′2 + x2 = 2 is x2 = C1 cos t+ C2 sin t+ 2.
Finally, x1 = −x′2 + tan t = C1 sin t− C2 cos t+ tan t.

Problem 6. If A =

(
5 8
2 5

)
, find

(a) the inverse matrix A−1;
(b) the eigenvalues and eigenvectors of A;
(c) the matrix function etA.

Solution. (a). We have

detA = 25− 16 = 9, and A−1 =
1

detA

(
5 −8

−2 5

)
=

(
5/9 −8/9

−2/9 5/9

)
.

(b). The eigenvalues of A are roots of the characteristic equation

χ(λ) = det(λI −A) = det

(
λ− 5 −8

−2 λ− 5

)
= λ2 − 10λ+ 9 = (λ− 1)(λ− 9),

i.e. λ1 = 1, λ2 = 9. The corresponding eigenvectors are nonzero solutions of systems (λI −A)v = 0:

λ1 = 1 corresponds to v1 =

(
2

−1

)
, λ2 = 9 corresponds to v2 =

(
2
1

)
.

(c). A fundamental matrix Ψ with columns eλ1tv1 and eλ2tv2 satisfies the matrix equation Ψ′ = AΨ.
The exponential matrix

etA = Ψ(t) ·Ψ(0)−1 =

(
2et 2e9t

−et e9t

)
·
(

2 2
−1 1

)−1

=
1

4
·
(

2et 2e9t

−et e9t

)
·
(

1 −2
1 2

)
=

1

4
·
[
et
(

2 −4
−1 2

)
+ e9t

(
2 4
1 2

)]
.
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