September 20, 2012

§6.4

Graphing Sine and Cosine Functions:

\[y = A \sin (wx) \quad y = A \cos (wx) \]

- Amplitude: \(A \) (vertical dist. from peak to trough)
- Period: \(\frac{2\pi}{w} \) (horizontal dist. from peak to peak or trough to trough)

Graphs

1. \(y = \sin x \)
2. \(y = \cos x \)

Graph Analysis

- **Domain:** \(\mathbb{R} \)
- **Range:** \([-1, 1]\)

Thus, \(\sin x = \cos (x - \frac{\pi}{2}) \).

Steps for Graphing Sine and Cosine

1. Find amplitude and period.
2. Divide \([0, \frac{2\pi}{w}]\) into \(8\) equal subintervals.
3. Use endpoints of subintervals to find key points.
4. Plot key points and connect the dots!

Example (12 from WS)

\[y = -2 \cos \left(\frac{\pi}{2} x \right) \]

- **Amplitude:** \(|A| = 2 \)
- **Period:** \(\frac{2\pi}{w} = \frac{2\pi}{\frac{\pi}{2}} = 4 \)

Correspondences

- \(\frac{\pi}{2} \)
- \(\frac{3\pi}{2} \)
- \(\frac{5\pi}{2} \)
- \(\frac{7\pi}{2} \)
§6.5

- graphs of \tan, \cot, \sec, \csc: functions
 $y = A \tan(bx)$ $y = A \cot(bx)$
 $|A|$ = magnitude (of vertical stretch)
 $T = \frac{\pi}{b}$ = period for \tan, \cot
 L = horizontal compression/stretch by factor of $\frac{1}{b}$

$y = \tan x$

$y = \cot x$

Steps for graphing tangent and cotangent:
1. Find magnitude and period
2. Draw in dotted vertical lines as asymptotes
3. Draw in key points on x-axis & midpoints between asymptotes
4. Plot other key points (when $y = \pm A$) to complete graph.
 ex.) (± 14 from WS)

$y = 3 \cot \left(\frac{x}{2}\right) - 2$

Magnitude $= |3| = 3$
Period $= \frac{\pi}{b} = \frac{\pi}{\frac{1}{2}} = 2\pi$
Vertical shift $= -2$ (down)
36.5 (cont.)

\[y = A \csc (wx) \quad y = A \sec (wx) \]

1. \(|A| \): magnitude of vertical stretch (sets range)
2. \(T = \frac{2\pi}{|w|} \): period
3. \(\rightarrow \) non-horizontal compression/stretch = \(\frac{1}{|b|} \)

Graph of \(y = \csc x \)

- Domain: \(\mathbb{R} \pm k\pi; \ k = 1, 2, 3 \)
- Range: \((-\infty, -1] \cup [1, \infty) \)

Graph of \(y = \sec x \)

- Domain: \(\mathbb{R} \pm \frac{\pi}{2}; \ k = 1, 2, 3 \)
- Range: \((-\infty, -1] \cup [1, \infty) \)

Steps for graphing cosecant and secant

1. Find magnitude and period
2. Stretch corresponding sine/cosine graph
3. Draw in dotted vertical lines as asymptotes
4. Plot key points when \(y = \pm A \) (at min./max. of parabolas)
5. Draw in parabolas to complete graph.

Example: \(f(x) = 2\sec (4x) + 1 \)

- Magnitude = \(|2| = 2 \)
- Period = \(\frac{\pi}{2} = \frac{\pi}{4} \)
- Vertical shift up = 1

Graph:

- Key points and asymptotes are marked on the graph.