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Abstract

We study the effect of algebraically localized impurities on striped phases in one space-dimension. We
therefore develop a functional-analytic framework which allows us to cast the perturbation problem as
a regular Fredholm problem despite the presence of essential spectrum, caused by the soft translational
mode. Our results establish the selection of jumps in wavenumber and phase, depending on the location
of the impurity and the average wavenumber in the system. We also show that, for select locations, the
jump in the wavenumber vanishes.
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1 Introduction

We are interested in the effect of localized impurities on self-organized, spatially periodic patterns, in partic-
ular in the idealized situation of an unbounded domain. Our goal is to quantify the effect of the impurity on
phases and wavenumbers in the far field. A prototypical example for the formation of self-organized periodic
patterns is the Swift-Hohenberg equation

up = —(A 4 1)%u + pu — u?,

where, for 0 < p « 1 periodic patterns of the form wuy(kxz; k), us (k) = us (€ + 2m; k), exist for a band of
admissible wavenumbers k € (k_(u), k1 (u)). Our results are concerned with this system in one-dimensional
space, = € R, including an impurity,

ug = — (02 + 1)%u + pu — u® + eg(z,u), (1.1)

where |g(z,u)| < C(u)(1 + |z|)~7*, for some =y, sufficiently large.

We find such perturbation problems interesting for a variety of reasons. First, small impurities are simple
examples of defects in spatially extended systems, and a systematic description of such defects is essential to
various multi-scale descriptions of extended systems. In particular, defects can be responsible for the selection
of wavenumbers k in extended systems. Second, perturbations of periodic patterns pose challenging technical
problems since the linearization at such periodic structures is generally not Fredholm when considered as an
operator on translation-invariant (or algebraically weighted) function spaces. The difficulty stems from the
presence of a non-localized neutral mode, in this case the derivative d,u, of the periodic pattern, which induces
a branch of essential spectrum near the origin. In this regard, our results can be viewed as a continuation
of a variety of results on perturbation and bifurcation in the presence of essential spectrum. Third, one can
interpret the effect of inhomogeneities in relation to the notorious question of asymptotic stability of periodic
patterns, where the pattern is perturbed at time ¢ = 0, whereas in our case the perturbation is constant
in time. It would be quite interesting to bring those two view points together and study spatio-temporal
perturbations of striped phases; see, for instance, [5, 6, 12, 13, 25, 26, 27].

The effect of inhomogeneities on patterns with a soft mode has been studied in detail when periodic patterns
are oscillatory in time [14, 23]. In this case, inhomogeneities may create wave-sources such as target patterns,



or act as weak sinks. In fact, in this case, the effects are quite similar to the effect of boundary conditions on
oscillatory media, or, more generally, the effect of self-organized coherent structures on waves in the far-field.

In the case of stationary periodic patterns, with vanishing group velocities, as they arise in the Swift-
Hohenberg equation, the literature on defects and their characterization is quite extensive [20], albeit arguably
not at the level of detail as we are striving for, here. In the direction of the present work, the characteri-
zation of boundary conditions on striped phases in [17] is closest. Results there show how to identify and
compute strain-displacement relations, that is, relations between wavenumbers and phases (translations) of
periodic patterns in the far field, induced by the presence of the boundary. Our present work can be viewed
as matching such relations at +00 and —oo0.

Technically, our work is following up on recent studies of inhomogeneities in a variety of contexts [11, 9, 10],
where Kondratiev spaces were used to study perturbations of spatio-temporally periodic patterns by inho-
mogeneities. The present work goes however significantly past those techniques by treating non-normal form,
actual periodic patterns, where in [11, 9, 10] the periodic patterns were, after appropriate transformations,
constant in space.

Our results are concerned with the spatially one-dimensional situation, only, but we hope that our approach
will allow us to approach higher-dimensional questions, as well. From a phenomenological point of view, the
one-dimensional case is most difficult since effective diffusion of the neutral mode is weakest in one space-
dimension, so that the effect of the inhomogeneity on the far-field is the most significant. This phenomenon is
well understood in the case of diffusive stability, where decay of localized data is faster in n space-dimensions
t~"/2 or in the case of impurities in oscillatory media, where small impurities can generate wave sources only
in dimensions n < 2 [11, 10, 14]. From a technical point of view, the one-dimensional case is easiest since
the problem of finding stationary solutions can be cast as an ordinary differential equation; see for instance
[17, 23] for this point of view. Our approach is different and in some sense more direct. We will however
comment on how to implement a proof using such “spatial dynamics” methods in the discussion.

Notations We collect useful notation used throughout. Let P;(R) and P;(Z) denote the set of complex-
coefficient polynomials of degree less than j € Z* defined on the real line and on the set of integers, respec-
tively. The inner product in a Hilbert space H is denoted as {-,-) and the linear subspace spanned by v € H
is denoted as (u). The Fourier transform on L?(R, H) and L?(Z, H) are denoted respectively as F and Fy.
Moreover, for a Banach space B, the notation {u*,w) represents the action of a linear functional u* € B*
on u € B. Throughout the Lie bracket, [L;, Lz], of two operators L; and L is the operator

[Ll,LQ] = Ll OLQ —Lg OLl.

We will use Banach spaces of functions on R and Z. Given s € Z* U {0}, p € (1,0), v € R, and denoting
|z] = /1 + |z|?, the weighted Sobolev space W37 is defined as

WP = {ue Li,o(R, H)||z]"03u e LP(R, H),for all a € [0,s] n Z},
with norm 7 _ [|#]70gu|z», while the Kondratiev space M3 on R is defined as
M3? = {u e Li, (R, H)||z]""*03u € LP(R, H),for all a € [0,s] nZ},
with norm )7 _ [[|#]"**0%u| . Their dual spaces are defined in the standard way and we write

W20 = (WyP)*, M_3%:= (M;?)*, where 1/p+1/q=1.

For s = 0, both spaces are simply weighted LP-space, denoted as Lb. For p = 2, we denote Wj*z as HJ.

Additionally, one can allow different weights on R* to obtain an anisotropic version of these spaces. More

specifically, letting x+ be a smooth partition of unity, with supp(x+) < (=1, ), x—(z) = x+(—z), we define
WP = {u e Ll (R, H))Xiu e W;f} . MEP = {u e Ll (R, H)’Xiu e M;f} :

— Y+ Y—V+



which are Banach spaces respectively with norms

lulwsr, = Ixsulwsy + Ix-ullwgrs lulage, o= Ixsulagy + Ix-ulazge.

Replacing R with Z and 0, with the discrete derivative 04 ({u;}jez) := {uj+1—u;} ez, the discrete counterparts

of LY ~and MJP,  are denoted respectively as ¢ _ . and .#77, . We point out that the discrete
counterparts of W3-P_ —are isomorphic to ¢ _  due to the fact that 64 is a bounded linear operator on
144 .
Y=+

Outline. The remainder of the paper is organized as follows. In Section 2, we present our main results.
Section 3 establishes Fredholm properties of one-dimensional differential operators with periodic coefficients
in suitable algebraically weighted spaces. Section 4 exploits these weighted spaces to treat impurities via an
implicit function theorem and establishes expansions for solutions. We conclude with a discussion in Section
5.

Acknowledgment. The authors acknowledge partial support through the National Science Foundation
through grants NSF-DMS-1311740 (AS) and NSF DMS-1503115 (GJ).

2 Main Result

We state assumptions and main results.

Hypothesis 2.1 (Localization of impurity) We consider (1.1) with smooth inhomogeneity g(x,u) that
is algebraically localized,
07 02 g, w)] < (L+ |z]) 77, j1 + 2 < 3, (2.1)

where vy > 6.

We next assume the existence of a periodic pattern.

Hypothesis 2.2 (Existence of stripes) We assume that there exists an even, periodic solution u, with
wavenumber ky > 0, up(§; ky) = up(€ + 2m; ks ) = up(—&; ks, to

—(ki&g +1)%u + pu —u? =0, (2.2)
for some p > 0, fized.

Note that this assumption is satisfied for 0 < p « 1, |ky — 1] « 1.

The next assumption requires in particular that u, is Eckhaus-stable. In order to state this assumption
precisely, we introduce the family of Bloch-wave operators

Lp(o) i= — (14 (0, +10)%)° + p— 3u2(2), o€ [0,ks), (2.3)

defined on D(Lg(0)) = Hi..(0,27/ky) < L2,.(0,27/ky). Note that all Lg(c) have compact resolvent and

per per
depend analytically on o as closed operators with Fredholm index O.

Hypothesis 2.3 (Stability of stripes) We assume that the periodic solution w, is spectrally stable, that is,
0 € spec(Lp(a)) precisely for o = 0, when the eigenvalue A = 0 is algebraically simple, with eigenfunction uj,.
For o ~ 0, the expansion of the zero eigenvalue in o does not vanish at second order, A\(o) = A\ao? + O(0?),
for some Ay # 0.



We note that for u « 1, Eckhaus-stable patterns satisfy this hypothesis with Ay < 0 [16], and Eckhaus-
unstable patterns do not, due to a kernel of Lg(c) for some o # 0. On the other hand, long-wavelength

unstable patterns may satisfy this assumption with Ay > 0; see for instance [22]. We will give an expression
for Ag in (4.20).

Lemma 2.4 (Family of stripes) There exists a smooth family of stripe solutions, up(kx — ¢; k), to (1.1),
parameterized by wavenumber k ~ ky and phase p € R/%Z.

Proof. We solve
—(1+ k2(7§)2u + pu —u® =0,

as an equation ngr,even — L2, using the implicit function theorem near u,(&; k4). The assumption that
the kernel of Lg(0) is simple, spanned by wuj,, odd, guarantees invertibility of the linearization. [

Our main result is as follows.

Theorem 1 Assume Hypotheses 2.1-2.8. Then there exists g and a two-parameter family of stationary
solutions to (1.1) of the form

u(z;e) = in(a:)up((k* + ko + ki)x — o F @15 ks + ko + k1) + w(z),
+

where w € Hff*, v+ > 6, and @1, k1 are Ct-functions of e,ko € (—co,20), @o € R. Moreover, ki and @1 have
the leading-order expansions

ki = My(po,0)e + O(e2), (2.4)
Y1 = Mw(wo, 0)5 + 0(62),

where for the case kg = 0,

WJ g(x, Up(k*a7 — $o;3 k*)) : ﬁfup(k*:r — 05 k*) dz
R

27T/k* ’

Mk(@(h O) =
Aok N (Ogup (ks ky))2da

WJ gz, up(kxx — o5 k) - [(x — @o/ks) Octp (ks — 005 by ) + Optp (kwx — po; ky )| da
R

27 kg

Aok §o (Oeup (kyx; by ))2da

MLP(50070) = (27)

We note that when the inhomogeneity is a gradient field, i.e. g = 0,,G(z,u), then

27

1
fatidgni= 5 [ Miten,0)dgo =0,
0

and M) necessarily vanishes for certain relative phase shifts ¢g. We can therefore find relative phase shifts
for which k; = 0.

Corollary 2.5 Assume that g € Hi*, Vs > 6, My(p4,0) = 0, and M (px,0) # 0. Then there exists &, ko > 0
and a function ¢o(e, ko) : [0,&] x [0, ko] — R with ¢o(0,0) = @y such that the wavenumber difference ky from
Theorem 1 vanishes for oo = ¢o(e, ko).

Proof. Scaling the equation (2.4) by € we may write k1 = ¢k where

k(e; 0, ko) = My (o, ko) + O(e).

Our assumptions My (p4,0) = 0, M| (p4,0) # 0 imply that k = 0 satisfies the conditions for the implicit
function theorem, guaranteeing the results of the corollary. The conditions on ¢ allow us to obtain a well
defined value for Mj (¢,0) . [



3 Fredholm properties in weighted spaces near the essential spec-
trum

The results in this section can be viewed independently of the remainder of the paper. The difficulty of
perturbing a striped pattern lies in the fact that the linearization is not Fredholm due to the presence of
essential spectrum at the origin, which in turn is induced by the non-localized eigenfunction wuj,. It is well
known that the linearization “behaves” in many ways like an effective diffusion. We therefore expect that the
linearization at a periodic pattern possesses properties similar to the Laplacian 0,,. The Laplacian, on the
other hand, while not Fredholm when posed as a closed, densely defined operator mapping D(0,,) = L? — L2,
is Fredholm when posed as a closed, densely defined operator mapping D(0,,) < L%72 — L?/, for ~v ¢ {%, % .
The goal of this section is to generally describe Fredholm properties of operators with translation symmetry
in R or Z near points of the essential spectrum. The main restrictions are to one unbounded spatial direction,
and to “algebraically simple” points of the essential spectrum, and to non-critical weights . Throughout, we
consider bounded operators, only. We will point out how these results imply Fredholm properties for more
general operators.

The outline for this section is as follows. We first consider operators with unbounded variable z € R in Section
3.1, then show how to adapt in a straight-forward fashion to operators with unbounded direction ¢ € Z in
Section 3.2. We finally show how to relate those results to Floquet-Bloch theory for operators on x € R with
periodic coefficients and establish Fredholm properties for those operators in Section 3.3. For convenience,
we recall Fredholm properties of 0., and of its discrete analogue in the appendix.

3.1 Operators with continuous translation symmetry

Setup — operator symbols and essential spectrum. We consider bounded operators £ on L?(R,Y),
where Y is a complex separable Hilbert space, that possess a translation symmetry, that is, they commute
with the action of translations on L?(R,Y’). The Fourier transform is an isomorphism of L?(R,Y), and, due
to translation symmetry, the induced operator £ on the Fourier space is a direct integral of multiplication
operators with Fourier symbol £ = §pcp L(k)dk, that is,

L: DKL) c LAR,Y) — L2(R,Y)

u(k) —  L(ku(k), 3.1)

with L(k) linear and bounded on Y for all k£ € R, see [1]. Formally, we have £ = L(—id;). Denoting the
Banach space of bounded operators on Y as B(Y'), we have

Hypothesis 3.1 (Analyticity of symbol) We assume that L(k) is analytic, uniformly bounded, with val-
ues in B(Y), in a strip k € Qp := R x (—ik;, ik;) for some k; > 0. Moreover, we require that L(k) is Fredholm
for all k € R and invertible with uniform bounds for |Rek| = ko > 0 for some ko sufficiently large.

We mainly think of L(k) rational, L(k) = P(k)Q(k)~!, with matrix-valued polynomials P,Q, where the
zeros of () lie off the real axis. On the other hand, our results allow to include convolution operators with
exponentially localized kernels. Specific examples are 0p,(1 — 0pz) ™, 0x(1 + 0,)71, (—id + K%*), K an
exponentially localized kernel, or (1 4 02)%(1 — 0%)~2.

Note that the spectrum of £ is bounded, given through
specr2p yy£ = {A | L(k) — A not bounded invertible for some k € R}.
In the case Y = R", this can be more explicitly characterized through

specrz2rrm) £ = {A | det (L(k) — A) = 0}.



Since L(k) is invertible for large k and Fredholm for all k € R, L(k) is Fredholm of index 0 for all £ € R and
the set of k € R where L(k) is not invertible is discrete.

We are interested in the case where £ is not invertible.

Hypothesis 3.2 (Simple kernel) There exists a unique ky and a unique (up to scalar multiples) eqg # 0
such that L(ky)eg = 0. We then scale {eg,eq) = 1.

In particular, A = 0 belongs to the essential spectrum of £. We can assume without loss of generality that
ky = 0, possibly conjugating £ with the multiplication operator e**?. We write ej for the kernel of the
adjoint L*(0) with {ef,ef) = 1.

Spatial multiplicities in the essential spectrum. We are interested in the unfolding of the zero-
eigenvalue at k = 0 for the family L(k). We therefore view L(k) as an analytic operator pencil and define the
spatial multiplicity as the multiplicity of k£ = 0 as an eigenvalue of the operator pencil. Since such construc-
tions are possibly not widely known, and the use here is less standard, we include the relevant constructions
here.

Recall that, according to Hypothesis 3.2, the kernel of L(0) is one-dimensional.

Lemma 3.3 There exists m > 0, mazimal, and e(k) = Z;‘n:o e;k? such that

k m—1
L(k)e(k) = Ank™ef + O(K™ 1), Z Liep_; =0, k=0,...,m—1; 0 # 2 Lm_jej,e§> = A
j=0 7=0

(3.2)
We refer to m as the spatial multiplicity of A = 0.

Proof. Write Q for the orthogonal projection onto span{e®}. We solve L(k)(eg + v) = z by decomposing

(L(k)(eo +v),e5) = 21 (3.3)
(id — Qo) L(k)(ep + v) = 22,

where z = z1ef + 22, 21 € R and 23 € Rg(id — Q). Since L(0) is Fredholm of index 0, L(0) : eg — (ef)* is an
isomorphism, and the second equation (3.4) can be solved using the implicit function theorem, with solution
v = vy (k, z2), where |k|,|z2| small. We then plug v, (k, z2) into (3.3), yielding

[k, z1,22) := (L(k)(eo + vi(k, 22)), e ) — z1 = 0.

Due to the fact that L(k) is invertible for all k£ # 0 € Qg, the reduced analytic function f(k,0,0) has non-
trivial Taylor jet, that is, there exists m € Z* and A, # 0 € C so that f(k,0,0) = \,,k™ + O(k™*1). Taking
v = v4(k,0), we have

L(k)(eq + vs(k,0)) = f(k,0,0)ed = X\, k™ef + O(k™T1).

Letting e(k) be the Taylor expansion up to order O(k™) of ey + vy (k,0), the claims follow quickly. [

Remark 3.4 In the case where X\ is an algebraically simple eigenvalue of L(0), one can slightly modify the
construction in the proof of Lemma 3.8 and solve L(k)e(k) = A(k)e(k) together with {e(k) — eg,eqy = 0
using Lyapunov-Schmidt reduction in much the same way. The linearization with respect to (e, A) is onto and
one finds the function A\(k) which is of course the expansion of the “temporal eigenvalue ” X\ in the Fourier
parameter k. From this construction, one finds A\(k) = A k™ + O(k™*1), for some A # 0, with m as in
Lemma 3.3.



Since expansions typically do not converge globally, we introduce localized expansions as follows. Define the
pseudo-derivative symbols

D(k) = ik(1 +ik)~*
Deym(k) = k(1 + Cik™) ™", (3.5)
with associated operators D(—i0;), Do m(—i0;). Here C' > 0 will eventually be chosen sufficiently large so
that the norm of the bounded multiplier D¢ ,, is arbitrarily small. Restricting to the strip

1
Qo(Cym) = {ke Q| |Imk| < ky := Wsin(%

D¢ (k) is in fact analytic and uniformly bounded, that is, there exists a constant C(m) such that
C(m)

Xc”
Remark 3.5 On the enlarged strip, {k € C | |Imk| < \F sin(£=)}, the pseudo-derivative De p, is analytic
but not bounded. To obtain boundedness, we can restrict ourselves to any narrower strip, {k € C | |Imk| <

ﬁsm( )}, for any N > 1. For convenience, we simply chose N = 2 and Qo(C,m) < Qq, where the
strip Qo is mtmduced in Hypothesis 3.1.

)}

|Dem (k)] <

for all k € Qy(C,m).

Note that replacing k by D¢ (k) in the expansion of e(k) does not alter its Taylor expansion up to order
m. We therefore may define, for all k € Q¢(C,m),

m
2 Dan 6]7

j=0
such that
L(k)é(k) = Amegk™ + O(K™ ). (3.6)
Repeating these considerations for the adjoint, we also find e*(k) = >.7° ¥k’ and define
. O [ ]Y
(k)= Y [Dem®| e
j=0
so that
L*(k)é* (k) = Ameok™ + O(K™ ™). (3.7)

Since L*(k) is anti-analytic, e*(k) is anti-analytic, and we use the complex conjugate D¢ ., (k) to guarantee
that €*(k) is anti-analytic.

Fredholm properties of £. Main results on Fredholm properties of £ are stated in the following theorem.

Proposition 3.6 (Fredholm properties of £) Suppose the operator L satisfies Hypothesis 3.1 and 3.2,
with k* = 0. Let m be the spatial multiplicity according to Lemma 8.3. Then, for v_, vy ¢ {1/2,3/2,--- ,m—
1/2}, the operator

L:D(L)c L? R,Y) - L? _ (RY), (3.8)

Y——mye—m Y=Y+
is closed, densely defined, and Fredholm. Moreover, setting Ymax = max{y_,V+}, Ymin = min{y_,v;}, we

have that

o for Ymin € L, := (m — 1/2,0), the operator (3.8) is one-to-one with cokernel

B
Cok (£) = span {Z (—)*(0%aP)et | B=0,1,--- ,m — 1} :

a=0



o for Ymax € Ip := (—0,1/2), the operator (3.8) is onto with kernel

:0’1’.‘.7m1}7

—1/2,k +1/2) for 0 < k € Z < m, the kernel of (3.8) is

=0317"'7m_j_1}7
—0,1,-~-,¢—1}.

On the other hand, the operator (3.8) does not have closed range for y_, vy € {1/2,3/2,--- ,m — 1/2}.

B
Ker (£) = span {Z (%28 )eq

® for Ymin € I; and Ymax € I; with Iy, :=

(k
B
Ker (£) = span {Z “(02z?)e

a=0

and its cokernel is

B
Cok (£) = span {2 “(poaxPer

The proof of the proposition will occupy the remainder of this section. The key ingredient is the construction
of a normal form representation of the operator L, through which we conclude that Fredholm properties of
the operator £ are equivalent to those of the regularized derivative [D(—id,.)]’. We organize the proof by first
establishing Fredholm properties of regularized derivatives defined in the Kondratiev spaces, then Fredholm
properties of the normal form of the operator L, and eventually concluding the proof by returning to physical
space.

Fredholm properties of regularized derivatives. We employ regularized derivatives as model operators.
More specifically, for any £ € Z™ and 4+ € R, we define the regularized derivative,

D(—i0,)]1¢: D([D(-id,)]%) < L2 _ — L?
[ ( )] ([ ( )]?u Yo —lyy—L . aﬁ(l —:_a;y.;ie (3-9)

with its domain D([D(—i0,)]*) = {u € L377Z’7+4 | (1 4+ 0,) fu e Mf 2, ~.—¢}- Moreover, the Fredholm

properties of the operator [D(—id,)]* are summarized in the following proposition.

Proposition 3.7 Foryy e R\{1/2,3/2,--- ,£—1/2}, the regularized derivative [D(—i0,)]* as defined in (6.1)
is Fredholm. Moreover, the operator [D(—id,)|* satisfies the following conditions.

o If Yoaw € Io := (—00,1/2), the operator [D(—id,)]" is onto with its kernel equal to Py(R).
o If Yoin € I := (£ — 1/2,0), the operator [D(—id,)]" is one-to-one with its cokernel equal to Py(R).

o If Ymin € I and Ymaz € I; with Iy, := (k —1/2,k + 1/2) for 0 < k € Z < ¢, the kernel and cokernel of
the operator [D(—i0,)]" are respectively spanned by Py_;(R) and P;(R).

On the other hand, the range of the operator [D(—id, )]’ is not closed if y_, v, € {1/2,3/2,....,0 — 1/2}.

Proof. The proof is relegated to Appendix 6.1, where we prove a more general result. [ |

Normal form operators. We diagonalize every operator L(k) defined in Y into the direct sum of the
Fourier counterpart of a regularized derivative and an isomorphism. To start with, recalling the definitions of
the modified kernel and cokernel expansions (3.6) and (3.7), for any k € Qo(C,m), we define the projections,

P(k)u = {u,eqyé(k), Q(k)v := (v, e*(k))ef, (3.10)

from which it is straightforward to conclude the following lemma.



Lemma 3.8 There exists Cy > 0 so that, for any C > Cy and k € Qo(C, m), the operators
id — P(k) : (k)™ — (o)™, id = Q(k) : {ef)t — (¥ (k)™

are isomorphisms whose inverses take the form,

(=PI b — el (id — Q)™ : @ kR)Y: — (et
u o u= g aselk), uo o u—(uedded.

(3.11)
Moreover, for fized C > Cy, both operators and their inverses admit uniform bounds for k € Qo(C,m).

We also introduce analytic isomorphisms ¢(k) : (€(k)) — {e¥) and ¢ (k) : {eg)t — (&*(k))*. Such isomor-
phisms can be constructed in many ways and we outline one construction here, that is,

k) : (e(k)y — <ed) L (k) et — (@ (k)Y
aé(k) — aef, v (id — Q)L (0)u, (3.12)

where we define the isomorphism ¢ (0) : {eg)* — {eff»* to be a direct sum of the identity map on (eg)t (et
and a linear length-preserving map from Eo 1 := span{ej — {ef,eo)eo} to Ej | = span{ey — {eo, e )ef}
More specifically, we have

o {2 oottt

c(eo —eo,ef)ef),  u = cef —{eg, eo)eo) € Eo,1-

We are now ready to define the normal form operators,

U —  D™(k)u(k)P(k)u + vy (k)(id — P(k))u, '
and prove the following lemma.

Lemma 3.9 (Factorization) For fized C > Cy and any k € Qo(C,m), the operator L(k) admits the decom-
position,
L(k) = My (k)Lnxp(k) = Lnr (k) Mg(k),

where My\g : Qo(C,m) — B(Y) are analytic, L*-bounded with an L*-bounded inverse.

Proof. For k # 0, the inverse of Lyr(k) is analytic and takes the form,
Lyp(k)u = D™ (k)™ (k)Q(k)u + ' (k) (id — Q(k))u = D™ (k)u, & (k))é(k) + 17 (0) (u — (u, e)eg)
In addition, we have that, based on (3.6),

1 m
lim L(k)Lyp(k)u = lim [(Hlk)

—0

o Cw € (k) L(R)E(k) + L(k)e 1 (0) (w = (u, €5 )ef)

=Amu, e + L(0)e1 (0) (u — Cu, e )ef)

is an invertible bounded operator. We now define

My, (k)u = {L(k‘)LNF(k)% k+#0,

) (3.14)
limy_,o L(k)Lyp(k)u, k=0,

which, according to Riemann’s removable singularity theorem and Hypothesis 3.2, implies My, (k) is analytic
and invertible for all k in the strip €y. Furthermore, noting that, according to Hypothesis 3.1, L(k) is
invertible with uniform bounds for k € Qy(C,m) with |Re k| > ko and

lim L&ll?(k') = <u7 €§>60 + LII(O) (u - <u’ €6k>€6k) )
Re k— o0

is bounded and invertible, we conclude that My, (k) is uniformly bounded with uniformly bounded inverses.
We can define and analyze Mg (k) in a completely analogous fashion. [ |



Back to physical space — proof of Proposition 3.6. We introduce the multiplier operators

ML\R . S(R,Y) —_—> S(R,Y)

— 3.15

which, according to the L*-boundedness and invertibility of ¢ M, and ¢ Mg for all o € ZT U {0}, are

isomorphisms on the Schwartz space S(R,Y). For any given v+ € R, it is straightforward to see that

S(R,Y) c L%—,w (R,Y) is a continuous embedding. We claim that we can continuously extend the multiplier
2

operators Mp\g onto L7 . (R,Y). In other words, we have the following lemma.

R,Y) - L2 _ (R)Y) are

Lemma 3.10 For any given v+ € R, the multiplier operators Mpg : L? S

V=V + (
isomorphisms.

Remark 3.11 We suspect that results analogous to Lemma 3.10 hold for general anisotropic weighted spaces
LY, (R)Y) with p € (1,00). It appears however that necessary-and-sufficient condition for Fourier mul-
tipliers on L? | (R,C) with general p € (1,00) are not available, only sufficient conditions such as the
Marcinkiewicz and the Hormander-Mikhlin multiplier theorems, which both can be generalized to certain fam-
ilies of weighted LP(R,C) spaces; see [18, 4, 15] for details and [1, 7, 29, 2] for general background on
operator-valued Fourier multipliers.

Proof. We first prove the case of isotropic weights, that is, v_ = v+ = v. For v € Z, u {0}, we adopt the
notation L2(R,Y) := L2 _(R,Y) and exploit the Plancherel theorem to derive that

”ML\RUHL?Y(R,Y) = HML\R{L”HV(R,Y) < C(’Y) HﬂHHW(R,Y) = C(’Y)HUHLE,(R,Y)a

which, together with a similar inequality for Mg\lR, shows that Mg : L,2y R)Y) — L'Zy (R,Y) are isomor-
phisms for v € Z U{0} and thus for v € Z_ due to duality. By classical interpolation results, see, for example,
Theorem 6.4.5 in [3], H"*?(R,Y) is a complex interpolation space between H"(R,Y) and H"*!(R,Y) for
any given n € Z and 6 € (0,1). Therefore, we conclude that Mg : L2(R,Y) — L2(R,Y) are isomorphisms

for y e R.

To prove the case of anisotropic weights, we start by introducing the exponentially weighted space

L2 (RY):={ue L (R Y)|e"u(-) e L*(R,Y)},

exp,n
with its norm ”U”Lixp JRY) = le"wu(-)| z2(r,y) for any given n € R. Our strategy is to exploit the fact that
the space LE{_,,H (R,Y) admits the decomposition,
2 _ (72 2 2 2
2 (RY)= (L% R,Y) A Lexpm(R,Y)) + (L7+ (R,Y) n Lexp,_n(R,Y)> , (3.16)

for any n > 0, where norms on intersections and sums are defined in the usual way; see below.

With this in mind, we first study the multipliers on Mp\g : L2, ,(R,Y) — L2 (R,Y) and claim that

are isomorphisms, for any fixed |n| < k1, where k; is half of the width of the strip Q¢(C,m). Note that the
multiplier on the Schwartz space can be viewed as a convolution operator. More specifically, denoting the
reflection (Ru)(x) := u(—=x), we define the distribution

Mpr: SRY) — C
u — (ML\RRU) (0)7

from which we readily derive that, for all u e S(R,Y),

(Mpgu) () = (Mg * u)(z) = j Ny — y)u(y)dy.

10



and the Fourier transform F(e”'ML\R(~))(k) = Mp\r(k +in) for [n| < k1. As a result, we have the inequality

IMugulze @y = f [ My — )] [e™ ()] dy ] oy

=[|F (" Myr () F(e"u(-)| 2w,y
=|Mpr (- +in)F(e"u(-)] 2 ry)
<[ Mpwr (- + i) Lo @By | F (€ u(-)] 2@ y)

<Clul g2

Sxp,n(RY)

holds for any |n| < k; and v € S(R,Y). Noting that S(R,Y) < L2 (R,Y) is dense, there are natural

exp,n

extensions of Mg as a bounded linear operator on Lgxpm(R, Y). Analogous reasoning applied to the

inverses of Mp,g lets us conclude that the multipliers My, : L2, ,(R,Y) — L2 (R,Y) are isomorphisms

for any fixed |n| < k;.
We are now ready to prove the case of anisotropic weights. Given two Banach spaces E and F, the linear
space E n F and F + F are also Banach spaces respectively with norms

lulzar == lule +[vlr, |ulerr = nf{jo]z + |wlr [v+w=uveEweF}.

Moreover, for a linear operator L bounded on both E and F, it is straightforward to check that L is also

bounded on E' n F and E + F. Therefore, given v+ € R and n € [0, k], due to the fact that Mg are

2

isomorphisms on L%i and L we conclude that My, g are isomorphisms on the Banach space

exp,+n>
By 74,mY) = (I2_(R,Y) 0 I3, (R.Y)) + (L2, (R,Y) n 12, ,(R,Y)). (3.17)
Es defined in (3.16), the Banach spaces Lgyf,w (R,Y) and B(y—,7v+,7n,Y) constitute the same linear space. It is
therefore sufficient to show that the natural norm on L%ﬂw (R,Y) is equivalent to the norm on B(y_,v4+,n,Y)
induced by the intersection and sum property. For any u € L%ﬂw (R,Y), we have
U= X4+U+ XU X+tUE L?/i (R,Y)n Lgxp;n(R, Y),
and
lelser vy myy SIxvules ®yynrz, @y +lIx-ulez ®@y)arz, @y
=Ix+ulez, @y) +Ix+ulez,  @y) +Ix-vlez_@y) +lIx-ulrz,, @y
<C(Wia77)[”X+UHL3+ ®Y) T HXfUHLi ®RY)]
:C('}/i, 77)HUHL377,Y+ R,Y)>
which implies that the two norms are equivalent, concluding the proof. [ ]

Denoting the inverse Fourier transform of Lyr as Lnr, we have
L= MpLxp, L= ML,

The proof of Proposition 3.6 now reduces to establishing Fredholm properties of Lnr.

Proof. [of Proposition 3.6] Noting that Y = (&(k)) @ {(eo)™ = (e¥) @ (¢*(k))*, the normal form operator
Lnr(k) admits an isomorphic diagonal form,

Lp(k) : (E(k)) ®{eo)y™ — (ef) ®<&* (k))*

SRR EBAOIS

11



According to Lemma 3.8-3.9 and definition (3.12) of projections (k) and +*(k), we derive that

Lap: DLxe) IV o W(RY) —> L (RY)
u > (D™ (=10 )u, eopeg + L1 (u — X5 ((DE,, (—i02)u, €0)e;),

where u(z) — Z?:O<Dé$m(—i(9m)u(x), eoyej € (egyt for all x € R and the mapping

i LB (R, leght) — Hue Ly (RY)| Z;’L&Dévm(—i&m)u(x),e;" =0, for all z € R}
v — 11000 = YLD (=100 11 (0)0], € )e

is an isomorphism. As a result, Fredholm properties of Lyr are encoded in the regularized derivative operator
[D(—i0,)]™. More specifically, we note that

m

FH D e (ak)em) | = ((D(=ieo) ™ uw) Jes. 7= (akek)) = 3 ([Dem (i) ula))e;,

Jj=0

which implies that the kernel and cokernel of Lxr is given respectively by

Ker (ENF) = {i ([Dc7m(—iax)]j ’u,(x))ej U(IL‘) € Ker ([D(—l(}m)]m) } ’
j=0

Cok (Lxr) = {i ( [Diam(iaz)]j u(x))e;s u(z) € Cok ([D(—i&r)]m)} .
j=0

Therefore, the statements in Proposition 3.6 then follow by applying the statement of Proposition 6.1 to the
above analysis and noting that, for any u € P,,, (R),

[Dem(—i0,)) u(w) = (—)*05u(x).

3.2 Operators with discrete translation symmetry

The results from Section 3.1 can be easily adapted to the case of an operator, £, on ¢?(Z,Y’), that commutes
with the discrete translation group Z. The discrete Fourier transform takes the form

Fa: CAZ)Y) — L*(T1,Y)

u=A{ujljer > (o) =2 ;uje (3.19)

—27mijo
where 77 := R/Z denotes the unit circle. The counterparts of the derivative 0, are the discrete derivatives,

0+({ajtjez) == A{aj+1 —ajtjez,  0-({aj}jez) == {a; —aj-1}jez, &:=—i(64 +5-)/2. (3.20)

The Fourier transform of £, denoted as £ = Sﬂ L(o)do, is an isomorphism of L2(77,Y), that is,

L: DL)c LAT,Y) — L3(T,Y)

u(o) — L(o)u(o), (3.21)

with L(o) linear and bounded on Y for all o € T5.
Hypothesis 3.12 (Analyticity, periodicity and simple kernel) We assume that L(c) is analytic, uni-
formly bounded, 1-periodic, with values in the set of bounded operators on'Y , in a strip o € Q1 := Rx(—ioy, i0;)

for some oi > 0. Moreover, we require that L(o), restricted to o € [—1/2,1/2], is invertible except at o = 0
and L(0) admits a simple kernel spanned by eq with {eg, ey = 1.

12



Remark 3.13 For convenience, we identify the interval [—1/2,1/2] with the unit circle Ty, collapsing end-
points —1/2 ~ 1/2.

We adopt all the notations in the continuous case, except for those related to pseudo-derivative symbols. The
new pseudo-derivatives take the following forms,

D (o) = e*™7 —1, D_(0)=1—e %™, Dem(0) = (2™ —1)[1 +iCsin™(270)] ",  (3.22)

whose associated physical operator are respectively d,, §_ and 6, [1 + iCém]fl. Here m € Z* is the minimal
power index so that the continuation of eigenvalue 0, A(¢) = A\,,0™ + O(c™*1), with \,, # 0 for 0 ~ 0 € C.
The constant C' > 0 will eventually be chosen sufficiently large so that the norm of the bounded multiplier
D¢, is arbitrarily small. As a matter of fact, in the strip

Ql(C, m) = {0 € Ql

|Reo| <1/2,|Imo| < %sinh_1 < 7{712? sin(;:n)> } ,

D¢ (o) is analytic and uniformly bounded, that is, there exists a constant C(m) so that

C(m)
ol

Moreover, we define e(0) = 37" jejo7 and e*(0) = 3/, eF57 so that

|Deym (0)] < for all o € Q(C,m).

m—1 k

L(o)e(o) = O(c™), L*(0)e* (o) = O(c™), > Lm_jej,e;';> #0, Y Ljerj =0, k=0,...,m—1L
Jj=0 j=0

There exist {€;,€7}]L, = Y, independent of C, and

Den@l s o)=Y [Den@| & oemuCm),
=0

and L*(0)&* (o) = O(a™).

2 O'Ms

é(o) =

so that L(c)é(o) = O(c™

Proposition 3.14 (Fredholm properties of £) For v4 ¢ {1/2,3/2,--- ;m — 1/2}, the operator satisfying
Hypothesis 3.12,

L:D(L)c 2
is closed, densely defined, and Fredholm. Letting Ymax = max{y_,¥+}, Ymin = min{y_,vy4+} and ﬂﬁ =
{nP},ez, we have that

7,Y)— 2 _ (Z,Y), (3.23)

m:“/+*m( Y=V +

® for Ymin € I, := (m — 1/2,00), the operator (3.23) is one-to-one with cokernel

B
= 0,1, ,m—1p,

Cok = span {Z ((ﬁgﬁ)éz
o for Ymax € Iy := (—0,1/2), the operator (3.23) is onto with kernel

a=0
B
Ker = span Z =01, m—1p,

® for Ymin € I; and Ymax € I; with Iy, := (k —1/2,k + 1/2) for 0 < k € Z < m, the kernel of (3.23) is

B
Ker—span{Z(éinﬁ)éa ,8—0,1,-'-,m—j—1},
a=0

and its cokernel is

Cok = span {

Q
i P=
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On the other hand, the operator (3.23) does not have closed range for v_, v € {1/2,3/2,--- ;m — 1/2}.

Proof. Just as in the continuous case, the proof reduces to the verification of Fredholm properties of the
discrete derivative 67" 7¢7 , for j = 0,1,--- ,m, which is relegated to Appendix 6.2. ]

3.3 Floquet-Bloch theory and periodic coefficients

We are interested in operators posed on the real line, with only a discrete translational symmetry. Examples
are of course the linearization at periodic structures, but include more generally operators with periodic
coefficients, P(0;, x), periodic in . One commonly introduces the Bloch-wave transform

B: LTy, [L2([0,27])]") — [L2(R)]"
U(o, x) — . ¢7"U(o,)do,

which is an isometric isomorphism with its inverse

B~t: [LAR)]™ — L*(Ti,[L([0,27])]™)

L 3.24
ww) kN + L), (3.24)

We refer to [21, XIIL.16.] for details. Under the Bloch-wave transform, P(0,, ) defined on [L?(R)]™ becomes
a direct integral — the Bloch-wave decomposition,

B loPoB=| PgL(o)do, (3.25)
T

where the Bloch-wave operator Py, (o) takes the form

PpL(o): D(Pu(0)) < [L*([0,2a])]" —  [L*([0,2x])]"

u(z) —  P(0y + io, z)u(z). (3:26)

We assume that the family of Bloch-wave operators Py, (o) satisfies the following hypothesis.

Hypothesis 3.15 (Analyticity and simple kernel) We assume that Pgr(c) is analytic and uniformly
bounded, 1-periodic, with values in the set of bounded operators on'Y, in a strip o € Qy := R x (—ioj, i0})
for some oy > 0. Moreover, we require that Ppy,(o),restricted to [—1/2,1/2], is invertible except at o = 0 and
Pg1,(0) admits a simple kernel spanned by eq with {eg,eq) = 1.

In order to exploit the results from Section 3.2, we first define the chopping operator C that identifies [ L?(R)]™
with ¢2(Z,[L?([0,27])]"), that is,

C: [L*R)" — *(Z,[L*([0,27])]")
u — {u(27] + )} jez,

and the discrete Fourier transform taking the form

Fa: C(Z,[L*([0.27])]") — L*(Th, [L*([0, 27])]")

" omiie 3.27
u = {u;}jez — ZjeZ uj(z)e 2mijo ( )

Under the transformations C and Fy, P(0,, ) again becomes a direct integral with the notation
J P(o)do := FgoCoPoC o Fh (3.28)

1
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In fact, for any U € D({. P(0)do), we have that

(I"d oCoPol! O}-d_l(U))(@ x) = Z e~ 2mije (P((’J’mx)f U(mw)e%ij”dn)
T1

jJEZL
= P(aw,x)f U(n,x) (Z e2wij(n—a)> dn
1 JEZ
= P(0y, ) L U(n,z)d(n —o)dn
= P(azax)U(J’x)’

which shows that, for any o € Ty,

P(o): D(P(o)) = [L*([0,2x])]*  — [L*([0,27])]"

u(z) — POy, x)u(x).
We conclude with a commutative diagram of isomorphisms as follows, dropping the superscript n for ease of
notation,
LT L2([0,20]) > L2(R) —5 (Z,12(0,27])) 7% L(Ti, L*([0,2x]))
L §7 Per(o)do P L §5 P(o)do

LT, L*([0,27))) 2> L*R) -5 2(z,L([0,2x]) 2% L*(Ti,[%([0,27))),

from which it is straightforward to see that STl Py, (0)do and STl P(o)do are isomorphic. Moreover, we have
the following lemma.

Lemma 3.16 The operators P(o) and Pgr (o) are canonically isomorphic for all o € Ty.

Proof. From (3.24-3.25) and (3.27-3.28), we summarize that for any o € Ty,
D(P(0)) = {e"u(w) € [L2([0, 27])]" | u(x) € D(Ppr(0))},
which directly implies that we have the isomorphism
Pgr(0) = e 9% P(g)el7?, (3.29)
]

According to Hypothesis 3.15, there exist m € Z*, A, # 0, e(0) = 27" ejo7 and e*(0) = 37" e¥5/ with

Pgr(0)e(o) = Amega™ + O(a™ 1), (3.30)

and
PE(0)e*(0) = Apega™ 4+ O(a™ 1), (3.31)
so that
m—1 k
<2 PBL’mjej,e§>7éO, ZPBL,jekijOa k=0,...,m—1.
=0 =0

According to Lemma 3.16 and Proposition 3.14, we have the following proposition.

Proposition 3.17 (Fredholm properties of £) For y_,~vy ¢ {1/2,3/2,--- ,m — 1/2}, the operator satis-
fying Hypothesis 3.15,
P:D(P)c L? S (3.32)

Y——m,yy—m Y+

is closed, densely defined, and Fredholm. Letting Ymax = max{y—,¥+}, Ymin = min{y_,vy4}, we have that
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® for Ymin € Iy, := (m — 1/2,00), the operator (3.32) is one-to-one with cokernel

B Na
Cok = span {Z (iz) €h—a
a=0

a!

5_0717"'7m_1}7

® for Ymax € Iy := (—00,1/2), the operator (3.32) is onto with kernel

B .
Ker = span {Z (iz)
a=0 a

[e3%

| ¢f-e

ﬁzovla"'am_l}a

o for Ymin € I; and Ymax € I; with I, := (k —1/2,k + 1/2) for 0 < k € Z < m, the kernel of (3.32) is

«

B .
Ker = span {Z (1:1:? €8—a
al

a=0

B=O717"'7m_j_1}7

5—0,1,-.-,1'—1}.

On the other hand, the operator (3.32) does not have closed range for y_, vy € {1/2,3/2,--+ ,m — 1/2}.

and its cokernel is

8 .
Cok = span {Z (iz) €h o

Proof. All results in this proposition, except explicit forms of kernels and cokernels, are direct consequences
of Proposition 3.14. From the isomorphism property (3.29) and the expansion (3.30), we have, for § =
071u"' 7m_]~7

(03

B .
(iz)
P ZO ol €Ef—a = 0,

which, combining with the domain of P for given v, concludes the proof. [ |

Remark 3.18 There is an alternative way to obtain the explicit forms of kernels and cokernels. The first
step is to obtain explicit forms of €; and é;‘. Taking €; for example, we note that the first m 4+ 1 terms of
the Taylor expansion of €*%e(a) and Z;’;O(e%i” — l)jéj with respect to o are the same. More specifically, we

have
. 2 (& (i)
e%e(c) =eg+ Z ——Ch—j of +0(e™*),
k=1 \j=0 J°
i( 2mio _1)ig. = ¢ +i 2mi)* (A(k, §)&;) o + O(c™ 1)
e €j = €g 7l yJ)€j) O o ,
j=0 k=1
where

At = 3 (9) e

=1
with A(k,j) = 0 for 1 <k < j. We can then solve {€;}7. in terms of {e;}7L,. In a second step, we plug all
these explicit expansions of €;’s into Proposition 3.14 to derive explicit forms of kernels and cokernels.

4 Impurities

We prove Theorem 1. Recalling x4+ is a smooth partition of unity with supp(x+) < (—1,00), x—(x) = x+(—z),

)

we write § = x4+ — x— and

o(x) = kox — o + k1© — 10(x), o' (@) = ko + k10(x) — 10’ (),
+

() = hor — g0+ (ki — 01),  (9%) (@) = ko + 1)
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where O(z) := {7 0(y)dy + ¢ with the constant ¢ > 0 chosen so that ©(z) = |z| for |z| > 1. We think of
@; and k; as matching variables in the far field and we will consider ¥y = (@0, ko) as free parameters and
Y1 = (g1, k1) as variables, and write 1) = (g, 1)1), so that ¢ = o(z;1), ot = p*(z;9). We write

up () = up (ke + @(@39)s ko + @' (39)),  up (@) == uplha + 95 (239)5 ks + (97) (@39)). (4.2)
We then substitute the ansatz u(x) = ug + w into the stationary Swift-Hohenberg equation, to obtain
LSH(ug’ +w) + F(u;f’ +w)+¢eg =0, (4.3)

where
Low = —(1+2)%  F(u) = uu— .

The phase shifts ¢t encode simply shifted phases and wavenumbers, so that u;—:’w are solutions to the Swift-
Hohenberg equation and, for both + and —,

X+ (LSHug’w + F(u{f’w)) =0.
Subtracting these from (4.3) gives
Lsuw + F'(uf)w + N(w,¢) + K + G =0, (4.4)

where
N(w,) = F(uf + w) — F(u}) — F'(u})w = O(w?), G = g(z,uf +w),

and the commutator K depends on 1, only,

K = Loy = Yvs L + Fu) = 30 F ().
+

In particular, one readily finds that K is compactly supported and smooth in v as an element of H,’yC for any
k,~. Expanding
K=K -9+ Ky Ky=O0(¢]*),

gives

LY (w,¥) + N (w,9) + eG(w, ) = 0, (4.5)

where
£Y¥(w,y) = Lspw + F'(u¥)w + K1 - 1),

with the following notation
Kl = a{/}K|’¢:0 = (KtpoaKk(ﬁKgﬂkal)a N(w;lb) = N(’LU,’I,[}) + KQ = O(|’LU‘2 + ‘111‘2)

Our goal is to use Lyapunov-Schmidt reduction to solve (4.5) with variables w, 1)1 and parameters €, 1), near
the trivial solution kg = k; = ¢1 =& =0, w = 0, and fixed ¢ € [0, 27).

Remark 4.1 Without loss of generality, we can also redefine the primary pattern, shifting its location by If—:
in a @o-dependent fashion, and subsequently applying the shift ' = x — f—;’ in (1.1). As a consequence, in
our proof, wg = 0, or, in other words, pg as a variable does not appear within ug and the dependence on ¢q
is moved to g = g(z' + £, u).

Making the role of variables versus parameters explicit, we further decompose
LY (w, ) = LY (w,91) + Ly,

with
LY (w, 1) = Lspw + F’(Uﬁ)w + Ky 1 + Ki, ka1, Lo = K00 + Kioko-
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In order to implement Lyapunov-Schmidt reduction, we proceed as follows. We precondition (4.5) with
M) == (£¥)~! and consider the resulting equation

(w, 1) + M) (L0 + Nw, 9) + £G(w,v)) = 0,

on H;l*_?)_ s X R2, in a neighborhood of the origin, with parameters v,e. The following two ingredients
ensure that we can actually apply the implicit function theorem near the trivial solution w = 11 = 0.

(i) The inverse M(3)) is bounded from L2 to H , x R?, and C" in ¢) when considered as an operator from
L2 to Hjlh?,ﬂ;, for v > 3/2.

2

(ii) The nonlinearity A is of class C* as a map from HJ x R* into L3,

origin.

with vanishing derivatives at the

We then choose v = 74 in (i) and 2y = 7, in (ii), which gives the restriction 2(vx — 3 — §) > <4, compatible
with v, > 6.

The second part is quite standard, using that v — wu - u maps Hlj into Hé“,y for k > 1/2, and we will focus
on the first part in the next two sections. We therefore proceed in several steps. We first show bounded
invertibility for ¢ = 0 in section 4.1 , in particular computing the derivatives of K and their projection on the
cokernel of £9 = Lgy + F”(uy), where u,, simply stands for u,(&; kx). We then show bounded invertibility and
continuity of ﬁf for ¢ # 0 using a decomposition argument in Section 4.2. Finally, we compute expansions
in Section 4.3.

4.1 Invertibility at ¢ =0
In this subsection we drop the subscripts from £{. We first show that

LY = L + F'(up), (4.6)

is Fredholm and identify the cokernel, then compute projections of the partial derivatives of K; on the
cokernel, and finally identify projection coefficients with effective diffusivity. Recall that u,(&;ky), with
& = kyx, denotes a periodic solution to the unperturbed Swift-Hohenberg equation. Throughout this section
we will write uj, := dyup = ks Ocup (& k), Oeuyp 1= Ogup(§; ky) and Opuy, = Opup (& ks)-

Fredholm properties of £°. We start by putting the results from Section 3 to work.

Proposition 4.2 Assume Hypotheses 2.1-2.3. For all v > 3/2, the linear operator L° : D(L°) < Hff_2 — L?y
is Fredholm of index -2, with trivial kernel and cokernel spanned by u;) and Up i, = T0gUp + OpUp.

Proof. According to Proposition 3.17 and the fact that m = 2, there exists ey and e; so that the operator
L0 := —[1+ (ks0¢)*]* + p — 3uZ(&; k), which is the counterpart of the operator P, satisfies

2060 =0, 20(61 + ifeo) =0.

By definition, £° is a rescaling of £° and thus e is the normalized version of u; = kyO¢up. According to the
dependence on parameter k of u,(&; k), we readily derive

LO(Opup + duy) = 0,

which, combining with the invertibility of L0 restricted to the subspace of even, 2r-periodic functions, shows
that drup + x0eup is a rescaling of e; +1€eg. As a result, we now conclude that the results in this proposition
follows naturally from the self-adjointness of £V. [ |

18



Spanning the cokernel. As a next step, we compute scalar products between
Ky = %K\w=0 = (Kgam Kkoﬂ KW17Kk1)7

and the elements in the cokernel. More precisely, we show that K,, = K, = 0 and that K, and K}, span

Gl Koy Cupn K >)
det P ! ’ 1 # 0. 4.7
<<u;,Kk1> Cupe K,y (4.7)

where (-, ) denotes the standard inner product in L?(R).

= So11S
up,k and uy, in the sense of

To start with, a straight forward calculation shows that the total derivative of K is

Oy K ly=o = L(0¢updyply=o + Ortpdy@ly=0) — Y| x+ L (Qeupdyp™ ly=o + dkpdy (™) [y=0) (4.8)
T

where Lo = Lgu + F'(up) as defined in (4.6) and

61/1()0 = (713‘%; 707 6), 611190/ = (Oa 13 70/7 9)3
Oyt = (—1,z,F1, +2), Oy () = (0,1,0,+1).

We then exploit the fact that x4 is a partition of unity and 6 = x4+ — x— to obtain expressions for each
partial derivative in (4.8),

KLPO = Kko =0,
Ky = [evﬁo]aﬁup - ‘CO(H/akup)v
K, = L°(00¢uy, + 00,up) — 0L (wdgup + Oup).

Recalling that up , = x0:up + Orup, we can further simplify the formula for Ky, into the following form,
Ky, = [['07 e]up,k +£° (@6gup — 93365%) .

We now proceed to show that (4.7) is true. Noting that £° is self-adjoint, §’ and © — fx are compactly
supported, u;, = ky0gu,, and

[£° w]v = Leu(wv) — wLsgv = [0} — 202, w]v,

we derive the expressions of projections of K, and K}, on the cokernel,

¢1
(upy, Ky ) = k;1<u;,, [0, Eo]u;) = k;1<u;, [02 + 202, 0]u,), (4.9)
Cup s Koy ) = ki Cup o, [0, LTy = ki Cup e, [0 + 207, 0]ui,), (4.10)
(upy, Ky ) = Cuy,, [£°, 0up i) = —(uy,, [0% + 202, Olup 1), (4.11)
Cup o Ky ) = Cup i [£°, 0]up ) = —Cup,es [0 + 207, 0lup, i), (4.12)

A straightforward computation gives

2m—1
J u[0*™, wlv da =J- w’ Z (=1 uDyEm=1=3) qg, (4.13)
R R 2o

which has the following two consequences related to (4.7).

(i) Applying (4.13) to equation (4.10) and (4.11), we conclude that the off-diagonal elements in (4.7)
coincide, taking the expression

3 1
Cuy, K, = bt o, Ko, ) = j e’[2(—1)]'10;{@54—3‘)+22<—1>ju;{2u;2—j> dz. (4.14)
R =0 j=0
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(ii) The expression (4.13) is zero if u - v - w is odd and each of u,v,w is either even or odd. Noting that u;,
and 6 are odd, up  is even, we conclude that the diagonal elements in (4.7) vanish, that is,

<u;)7KLP1> = <up7k7Kk1> = O (415)

To further simplify the expression of off-diagonal elements (4.14), we notice that the projections on the
cokernel are independent of the choice of #. More specifically, suppose #; and 6y differ by a compactly
supported term, 66, we can evaluate the contribution of §6 to our projections:

JR up (£, 660]up j dz = fR up, £°(66up ) — ur,60Lup, , dz = 0.

As a result, the expression in (4.14) converges, as §' — 2§,,, to

3 1
b, K, ) = kg o, Koy ) = 2 [Z (1l a2 ) (1)Ju;{;u§3]>] (4.16)
Jj=0 7=0

=0
where ¢ € R is arbitrary. Now, using u, , = ﬁu;} + Orup and up,(0) = uy, (27/ky) = 0, averaging the constant
expression in (4.16) over a period xg € [0, 27/k,] and integrating by parts, we find,

2 27 [k
Qup Ky ) = kalup g, Ko, ) = ;L [ks0n ((uh)? = (u))?) + (3(ul)? = (u},)?)] da. (4.17)

We will see how this expression relates to the effective diffusivity, next, and hence conclude that it does not
vanish. As a consequence, £° is bounded invertible.

Computing the effective diffusivity. We first recall the definition of L (o) from (2.3), and consider the
eigenvalue equation

Li(o)e(o) = A(o)e(o), (4.18)
for A(0) = 0 and o ~ 0. Expanding
Lg(0) = Lo+ L10 + Lao® + O(0®), e(0) = eg + €10 + a0 + O(c%),  Ao) = Aao? + O(3),
and setting ep = uj, and {eq, e(0) — €0)£2(0,2x/ky) = 0, We find explicitly
Lo=—(1+02)%+p—3ul(z), Li=—4i(1+02)d,, Lz=2+60Z
which, plugged in the eigenvalue equation (4.18), solve
Loeg =0, Lieg+ Loey =0, Lges + Liey + Laoeg = Aseg.
Noting {e1,€0)12(0,2x/ky) = 0, We project the equation for Ay onto ey, that is,
A2{€0,€0)12(0,2n/ky) = (L1€1 + L2€o, €0)12(0,27 k) - (4.19)
In order to determine ey, we recall Lemma 2.4 and notice that the derivative dyu,(kx; k) at k = ks satisfies
—4ky (1 + k503)03up + (—(1 + kE02)% + i — 3ul) Opup, = O,
or equivalently, Lieg + Lo(ik«0Orup) = 0, which gives
e1 = ikdpup.

Inserting the expansion for Ly, Lo and e; into equation (4.19) gives

27 kg ) 27 kg ) ) ) )
AQL (u)? da = _QL ket ()2 — (1)) + (3(u2)? — (ul)?)] dor. (4.20)
Therefore, combining (4.17) and (4.20), we conclude
l Az 2k 7\2
<up, Ky, = k*<up7k,K¢1> = i . (up) dz. (4.21)
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Remark 4.3 Notice that a similar reasoning to the proof of Proposition 4.2 shows that for v > 3/2 the
operators LYY = Lgy + F’(u;—“w), with ut" as in equation (4.2), are also Fredholm operators from H5_, to
L2. Moreover, because the inner products (4.9),(4.10),(4.11), and (4.12) depend continuously on the parameter
), the terms Ky, and Ky, span the cokernel of these operators as well.

4.2 Invertibility for Elf

The invertibility of ﬁf for 1 = (0, p,0,0) can be derived straightforwardly from the invertibility of £ due
to the simple fact that E’f for ¢ = (0, ¢0,0,0) is conjugate to L} via a spatial translation. As a result, we
only need to deal with the operator Elf for ¢» ~ 0. The operators Elf’ are close to £9, but the difference is
in general not relatively bounded. The difficulty stems from the fact that £§ “gains localization” in certain
components, whereas the difference qu — L9, a bounded multiplication operator, does not affect localization.
Therefore, a simple Neumann series perturbation argument will not suffice to establish invertibility of ﬁf.
We establish somewhat weaker bounds on an inverse of Llf as follows. First, using the results from subsection
4.1 and changing notation in oder to make the distinction between variables and parameters explicit, we write
a more complete definition of LY, that is,

LY (w, 1) == —(1 + 02w + pw — 3(ug)2w + Ky a0 + Kiyar = h (4.22)

where ¥ = (U1, U2, ¥3,9,4) denotes the parameter, and w, Y1 = (ap, 1) are variables. The following proposi-
tion then shows the invertibility of this operator and its differentiability with respect to ¥.

Proposition 4.4 For v > 3/2, (4.22) possesses a solutions (w, 1) such that
lwles_, + [¢1] < Clh L2,

with constant C independent of 9, sufficiently small. Moreover, the solution depends continuously on 9 in

H;l_z_(;, and is differentiable in ¥, when considered in spaces with weaker localization,

|0swlps_, , +100¢1] < Clh 2.

3—
Proof. For ease of notation we let mg = K, ,m1 = Ky, , and look for solutions to

E?(w,wl) = L% + agmg + aymq = h, (423)

2

where w € H372, ap, a1 € R are variables, h € L7_,, and

Lo = —(1+ ) *w + pw — S(ug)zw.

We recall as well that mg and m; span the cokernel of L7 = —(1+ 02)% + p — 3(ut?)?, where ut’ follows
the same definition as in equation (4.2). We decompose (4.23) using the partition of unity, w = wy + w_,
h=hy+h_,wy = x+w,ht = x+h, and obtain

1
Ly + 3 (g = By + (L7 = L7 ) w_ — hy =0, (4.24)
j=0
1
L%+ Y Bimy+ (L7 — L5 )wy —h_ =0. (4.25)
j=0

To solve (4.24) and (4.25) for wy, a;, 85, j € {0, 1}, we will consider the cross-coupling terms (£7 — £57) wy
as small perturbations. Note that, given h € L?Y, the system

[,+’19’LU+ + Z(Oéj — Bj)mj —hy =0
L%+ Bim; —h_ =0,
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possesses a unique solution, (w,,w_,ay,as, B1, B2), where w_ € H? wy € HY, with v/ arbitrarily

Y=2" =2
large since h4 are supported on +x > —1. Given |¢| small, the cross terms are small, bounded operators when

considered on these spaces since, for instance, supp(£? — £L77) ¢ R*, and w_|p+ € nyl,. This establishes
the existence of a bounded inverse, with w = wy +w_ € HJ 4 ,. It remains to establish the desired smooth
dependence of the solution w = (w, g, 1) on ¥. Writing Elw = h briefly as L(9)(w(¥9)) = h, we find

w(¥ + Co) —w(¥) = —L(9) 7 (LI + Co) — L(V)) w(® + Co),

where 0 < ¢ « 1, 9, 0 € R* with || = 1 and |J| sufficiently small. Now £(9) 1 (L(¥ + o) — L(¥)) converges
to zero when considered as an operator from H,‘§72 — H;l_Q_ s, for any 6 > 0, which, using uniform bounds
for w(¥ + Cp), establishes continuity. Difference quotients and therefore continuity of partial derivatives can
be established in a similar fashion. Notice however that the dependence of the operator £V on the parameter
comes from the coeflicient
3(up)® = 3[up (ke + @3 ks + )P,
via
o(z) = Yz + V2 + V30 (z) — Vab(x).

Therefore, derivatives of w(¢) with respect to 9;, j = 1,3 induce linear growth and involve loss of one degree
of localization. [

4.3 Reduced equations and expansions
To obtain approximations for the variables (w, 1, k1), we assume expansions of the form

w = U)l((po, ko)éf + 0(62),
@1 = M, (o, ko)e + O(e?),
ki = My(po, ko)e + O(g?),

and we observe that the first order approximations of (w1, My, M},) satisfy the following equation
Loy + Ky, My + K, My + G1 =0,
where by Remark 4.1 we have that

Gl :g(:xl+ SDO

?,UP((k* + ko)xl; k* + k()))
*

We then proceed to use Lyapunov-Schmidt reduction and obtain the following reduced equations by projecting
on the cokernel of £°,

0 = Cup ks Ky )My + (up 1, G1)
0= <u;,Kk1>Mk + <’U,;,, G1>,

where the variables M, and M}, depend on ky and ¢g. Then combining these results with (4.21) and (4.16),
and in the particular case of kg = 0, we obtain formulas for M, (o, 0) and My (po,0), that is,

Wk*f gz’ + S]: p)Up i Az’

o 27 (u)2 da

MLF(<)007 0) =

ng( +@up)u da’

*

)\ 527r/k* 2 dz
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It is useful to consider again the change of variables ' = z — If—:, and write

J gz’ + %wp)u;) da’ = J- g(x, up (ksx — po; ks ) Jup, (ks — o3 by ) dar,
R * R

which, in the case of g = 0, H(x,u) for some function H, implies that

21

1
J‘:Mk dgg = 7 My (¢0,0) dpo = 0.
0

5 Discussion

In this paper, we developed a functional-analytic framework for perturbation theory in the presence of essential
spectrum, induced by non-compact translation symmetry. The key ingredient are algebraically weighted
spaces, including loss of localization by the inverse according to the spatial multiplicity of the essential
spectrum. We restricted to “simple” branches of essential spectrum for notational simplicity but the methods
generalize to more complicated situations. The framework included problems on infinite lattices and cylinders.
A crucial assumption is that there is precisely one unbounded direction.

We showed how such results can be used to study defects, here impurities, in striped phases. The framework of
algebraically localized spaces here allows for algebraic decay of impurities. One naturally encounters negative
Fredholm indices in the linearization, which one compensates for by adjusting parameters in the far field.
In fact, the spatial multiplicity is related in a direct way to the fact that periodic patterns come in two-
parameter families. Technically, the decomposition into core deformations (algebraically localized functions)
and far field deformations (wavenumber and phase corrections) can be employed in a variety of different
contexts. In particular, our approach lays the basis for the continuation of localized deformations such as
defects in parameters using more classical algorithms of numerical continuation [17].

We emphasize that our results do not depend on the particular equation, studied, as long as one is able
to determine the existence of periodic patterns and establish properties of the linearization. It is worth
noting that both, existence and stability properties, can be established in very reliable ways solving simple
periodic boundary-value problems. In particular, one can treat reaction-diffusion systems without much
adaptation. More interesting are systems with conserved quantities such as Cahn-Hilliard, Phase-Field,
or DiBlock Copolymer models, since mass conservation induces an additional multiplicity in the essential
spectrum, thus violating Hypothesis 3.2 on simple kernels of L(0). One could also study problems in channels
or infinite cylinders, in particular deformations of hexagonal spot arrays with periodicity of inhomogeneities
in one direction.

There are at least two alternative approaches. First, one could work in exponentially weighted spaces,
resorting to stronger assumptions on the inhomogeneity. Fredholm properties of differential operators on
the real line in exponentially weighted spaces are well known [19, 24] and have been used in the context of
perturbation and bifurcation theory in the presence of essential spectrum [24, 8].

In a similar vein, one could cast the existence problem as a non-autonomous differential equation in space x,
and use dynamical systems tools to investigate the effect of inhomogeneities. From this point of view, the
periodic patterns form a two-dimensional normally hyperbolic manifold of equilibria. One can then readily
calculate the effect of inhomogeneities on the periodic flow on this center manifold, using traditional methods
of averaging.

A major drawback of these more subtle methods is the reliance on a phase space and exponential behavior
in normal directions. In particular, there is no clear path towards perturbation of two-dimensional patterns.
Algebraic weights, however, allow for finite-dimensional reductions in the presence of essential spectrum also
in higher dimensions [9, 10].
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6 Appendix

6.1 Fredholm properties of pseudo-derivatives [D(—id,)]~*

In this section we prove a more general version of Proposition 6.1. More specifically, for any £ € Z*, p € (1, 00)
and v+ € R, we define the regularized derivative,

D)) s DD < L, — L, o
u — (95;(1 + (91)7EU,
with its domain D([D(—i0,)]%) = {u € LY e | (1 0z)u € Mf’_p_z,»y+_z}~ Moreover, the Fredholm

properties of the operator [D(—id,)]¢ are summarized in the following proposition.

Proposition 6.1 For vy e R/{1—1/p,2—1/p,--- £ —1/p}, the reqularized derivative [D(—id,)]* as defined
in (6.1) is Fredholm. Moreover, the operator [D(—i0,)]* satisfies the following conditions.

o If Ymaz € Lo := (—0,1 — 1/p), the operator [D(—id,)|* is onto with its kernel equal to Py(R).
o If Yin € Iy := (£ — 1/p, ), the operator [D(—i0,)]" is one-to-one with its cokernel equal to Py(R).

® If Voin € Ii, Ymax € I; with I := (k—1/p,k + 1/p) for 0 < k € Z < {, the kernel and cokernel of the
operator [D(—id,)]¢ are respectively spanned by Py_;(R) and P;(R).

On the other hand, the range of the operator [D(—id,)]* is not closed if y_, v, € {1—1/p,2—1/p,...,£ —1/p}.

We will only prove the result in the isotropic case, that is for v_ = v, =+, since the proof for the anisotropic
case follows the same arguments with straightforward modifications. We start by showing in Lemma 6.2 that
the operator (1 + d,) : WP — W!='P is an isomorphism and then establish the Fredholm properties of

ot M fffp — Mff’p in Lemma 6.4. By combining these two results one arrives at Proposition 6.1.
Lemma 6.2 Given L€ Z", pe (1,0), v € R, the operator 1 + 0, : Wf’P — Wf—l,P s an isomorphism.

Proof. We have the following commutative diagram

2, 140, 0—1,
wihe L% Wi=tp
[z]7 | R

My

W e

As a result, we have (Myu)(z) = |z]7(1+0,) (|| u(x)) = (1 £0,)u(z) — vyx|z|~2u(x), that is, according to
the Kondrachov embedding theorem, the operator My is equal to a compact perturbation of the invertible
operator (14 d,): W5 — W*~LP_ Noting that Ker M4 = {0}, we conclude that M is invertible. ]

¢

x?

. . .. k+1
we first generalize the canonical definition of 0, : M 7f1 RN Mff?f’

where k > 0 to the k < 0 regime: given k € Z~, the operator 0, : Mffllp — M*%? is defined as

To obtain the Fredholm properties of 0

Opu(v) = —u, 0pv), Yue MEFIP ve MTH (6.2)
where 1/p +1/q = 1.

Remark 6.3 The generalized operator 0, : L271 — M;l’p is an extension of the canonical operator 0, :
M,if'l — LP in the sense that ,u(v) = {0yu,v), for any u € M,if’l and v € Miff

For this generalized operator, we have the following lemma whose proof will occupy the rest of this section.
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Lemma 6.4 GiwenkeZ,leZ',pe (1,0), and ye R\{1 —1/p,2 — 1/p,...,£ — 1/p}, the operator

¢ . skt k,

0, .waep—>M7 P (6.3)
is Fredholm. Moreover,

e if v < 1—1/p, the operator (6.3) is onto with its kernel equal to Pg(R).
e if v > {—1/p, the operator (6.3) is one-to-one with its cokernel equal to Pp(R).

o ifj—1/p<y<j+1—1/p, where j € ZT n[1,£— 1], the kernel and cokernel of the operator (6.3) are
respectively Py_;(R) and P;(R).

On the other hand, the operator (6.3) does not have a closed range if y€ {1 —1/p,2 —1/p,....£ — 1/p}.

We focus on the proof of the two primary cases when ¢ = 1 and k = 0, —1, which can be readily generalized to
the case when £ = 1 and k = n, —n—1 for n € Z™, and then the case £ > 1. The proof is given in various steps
written as lemmas. We first establish Fredholm properties of the operator 0, : M 1f1 — LY wheny>1-1 /p
e 1—>M7_1’pwhen7;£1—l/p
in Lemma 6.7-6.8, where Fredholm properties of the operator 0, : M7f1 — LF when v <1 - 1/p follows.
Finally, we show in Lemma 6.9 that for v = 1 — 1/p both operators do not have closed ranges.

in Lemma 6.5. We then establish Fredholm properties of the operator 0, : L

Lemma 6.5 Given p € (1,00) and v > 1 — 1/p, the operator, 0, Ml’p — L, is Fredholm and one-to-one
with its cokernel spanned by P;(R).

Remark 6.6 We can readily apply the techniques from the following proof to show that, given p € (1,00) and

[v+ = (1 =1/p)][v- — (1 — 1/p)] < 0, the operator, 0, MAY”:1 yo—1 > LB is bounded and invertible.

Proof. Given v > 1— 1/p, we denote
g tren | £-o

which is closed in LE since 1 is a bounded linear functional on LE. It is not hard to see that, for any u € M Wlfl,
its derivative d,u € L*. We then consider v(zr) := S Ozu(y)dy and take Cy = lim,_,_ o, v(z). It is clear that
there exists some C3 € R such that u(z) — v(z ) C5, which leads to

lim u(z) = Co, hrzlw u(z) = Cy + Ch.

Tr—0

The fact that u € Lf’hl implies that if the lim,_, 1+ u(z) exists, it must be zero. Thus, we have C; = Cy = 0,
that is, SR Ozudx = 0, and consequently
Rg(0:) < L |.

We now claim that the inverse of 0, can be defined as

o' P, — M7

(6.4)
ro— [ 1w
The fact that d; ! is well defined reduces to verifying that u(x S fly f/ 1- To do that, we let
4:=~—(1—-1/p) > 0 and split R into three intervals, that is, IR{ (- 71) [—1,1] U (1,00). First, it is
not hard to see that
lu@)zz 10 < C(v:p) ‘m‘i)ﬂu( )| < Cup)fleiw < COupIflee ) (6.5)
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where C(7) is a constant varying with v and p. For the interval (1, 00), we use a logarithmic scaling, that is,
7i=1In(z), w(r):=eule”), g(r):=eTTV7f(en).

so that the ODE w, — Jw = g admits a solution w(r) = S; e¥(7=9)g(s)ds. Applying Young’s inequality to
the above integral equation, we obtain

(1/p—7%) 1 1
V2 lu@)lzz_,, (e0) < [0 Lr0.00)) < %HQ(T)HLP((O,OO)) < §||f($)||L§+1_l/p((1,oo))- (6.6)
For the interval (—oo, 1), a similar argument can be applied and leads to the inequality,

—0,-1))- (6.7)

Combining the inequalities (6.5)—(6.7), we conclude that the operator (6.4) is well defined and we have

105 Flagre, = lulze_, + 1 flze < COIf Nz,

u(@)lez

(—0—1)) < C(v, D) f ()] e

w+1—1/p((

which implies that 0, ! is also a bounded linear operator. [ |
Lemma 6.7 Given p € (1,0), we have that,
e fory>1—1/p, the operator 0, : LY | — M P is one-to-one;

e fory <1—1/p, the operator 0 : Lf;_l — M;l”’ is Fredholm, onto with its kernel equal to P1(R).

Proof. For v > 1—1/p, consider u € Lf;_l with dyu = 0. We let {up}nen = C° such that u,, — u in Lf/_l

and then have that, for any v € Mi’,g,
Opu(v) = —u, 0,vYy = lim {Optin,v) =0,
n—o0
which implies d,u,, — 0 in LE. We therefore have u = 0, proving the first statement of the lemma.

For v < 1—1/p, the operator 0, : Mig — Lfllfv’ according to Lemma 6.5, is a Fredholm operator with index
—1 and cokernel equal to P;(R). Therefore, the operator 0, : Lgfl — M;1>p7 as the adjoint operator of

0p: MLT — L{_, with an extra negative sign, is Fredholm with index 1 and kernel equal to P;(R). [
Lemma 6.8 Given p € (1,00), we have

o for v <1—1/p, the Fredholm operator 0, : Mﬂtf’l — LF is onto with its kernel equal to P1(R).

e for v > 1 — 1/p, the Fredholm operator o, : L’f{_l — M;l’p is one-to-one with its cokernel equal to
Pi(R).

Proof. To prove the lemma we just need to show that each operator has a closed range. We restrict
our attention to the first operator, the second being analogous. By way of contradiction, suppose that
Oz : lefl — L?; does not have a closed range for v < 1 — 1/q, then there exists a sequence {uy, }neny < Mif’l
such that dist(uy,P1(R)) = 1 and |0zun[rz — 0. The norm inequality [Oytin 1.0 < |[0ztun|lrz, together
with the fact that the operator 0, : Lf';71 — M; 1P has closed range show that we can find a subsequence

{v,} = Ker (0,) © Mi’pl such that |u, — UnHLz71 — 0. Therefore, we have
ln — v"”Miﬂ < Jlun — Un||L$_1 + [ Opun — azvnHLE, — 0, as n — o,
that is, dist(un,P1(R)) — 0, which is a contradiction and concludes the proof. ]

Lemma 6.9 Given p € (1,0) and v = 1 — 1/p, the operators 0y : lefl — Lt and 0, : LY, — M;VP do
not have closed ranges.

Proof. Let ¢ € CF with 0 < ¢ < 1 and supp(¢p) = [—1,1]. Let u,(z) = ¢(x/n), then {dytn}nez+ is a
bounded sequence in M P (also, in L?). However, if v = 1 —1/p the sequence {u, }nen is unbounded in

LP

1 (also, in Wifl). Therefore, both operators do not have closed ranges. |
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6.2 Fredholm properties of operators ¢ ‘6"

Proposition 6.10 Giwen ke Z, L€ Z*, pe (1,00), and ye R\{1 —1/p,2 — 1/p, ..., — 1/p}, the operator
708t MEEPP — MEP, (6.8)

is Fredholm for i € [0,£] nZ. Moreover,

e if vy <1—1/p, the operator in (6.8) is onto with its kernel equal to Py(Z);
e if v > {—1/p, the operator in (6.8) is one-to-one with its cokernel equal to Po(Z);

o ifj—1/p<y<j+1—1/p, where j€Z* n[1,£— 1], the kernel and cokernel of the operator in (6.8)
are respectively Po_;(Z) and P;(Z).

On the other hand, the operator in (6.8) does not have a closed range if v € {1 —1/p,2 —1/p, ..., — 1/p}.

The proof of Proposition 6.10 is essentially the same as in the continuous case, that is, the proof of Lemma
6.4. The main technical difference lies in the proof of the the discrete version of Lemma 6.5, which we shall
establish now.

Lemma 6.11 For~y > 1—1/p and p € [1, 0], discrete derivative operators, d4 : //4;’71 — (L, are one-to-one
Fredholm operators with both cokernels spanned by P1(Z).

Proof. It is straightforward to see that d4 are isomorphic and we only need to prove the results for ..
Just like the continuous, the essential part is to prove that

6t e, — Ogog_l
{bj}jEZ i {7Z¢:jbi}j€Z,

where E’fml = {{bj}jez € & | Xojez bj = 0}, is the bounded inverse of d;. To do that, we instead consider the
following operator
ot 6N — B,
{bjtjen — {= 22, [bil}jen,

We denote a; = — Z?O:j b; forall j € Z and a; = — Z?O:j |b;] for all j € N. It is then not hard to conclude that
® aj 1 —a; =b;, forall jeZ
® Q1 —a; = |bs|, for all j e N;
o {@;}jen is an increasing sequence with non-negative entries;
o |G;| > |a,|, for all j e N.

For any ¥ > 0 and j € N, we introduce

29+ 1
Aj = 2j:/52ﬂa Bj = 2‘7% Z |bj|7

=27

and have 2_§Aj+1 —A; = Bj, or equivalently, A; = — Zfozj 20-97B;, which, according to Young’s inequality,
leads to that N
5 27

{4 senller vy < 1127 Yjenller [ Bjjenlleray < 5 {Bi}senler - (6.9)
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Moreover, on one hand, we have

o © !
H{Aj}jeN”fp(N) = Z 2PI=3 (27 [y, |P) = Z 9(p—1)j Z |t |P
j=0 7=0 =27

w [29t1-1

>min{a' P, 1 > [ > [P (6.10)

=0 \ =27
= min{d' 7, G ez I gy
y—-1/p

> min{4'7, 1}{{a;}jez+ 1o
v

@)
1/p
On the other hand, we have
© 1 27111 Py 27111
”{Bj}jeNHZZP(N) = Z o(F+1)pj 5 Z b | < Z ol(3+1)p—1lj Z |b; [P
j=0 =27 7=0 =27
i 2”’*21:—1 (6.11)
< max{417(:’+1)p, 1} Z‘(ﬁ+1)p71|bi|p
j=0 \ i=2s

= max{417ﬁ+1)pa 1}1{b;} jez+ H?E (z*)
y+1-1/p

Combining these inequalities (6.9), (6.10) and (6.11), we conclude that, there exists C'(%,p) > 0 so that

Hajbjezsle_, @) < CLP)bYjezr e, vy < COP)bsYiezler,, @)

By shifting and letting j — —j, we can also show that

H{a’j}jEZ*u{O} /P

L@ u{o}) S C(7,p)I{bj}jez 2 11 (D)

In conclusion, letting 4 = v — 1 —1/p > 0, there exists C(y,p) > 0 such that

{ajtiezler . < Clv,p)I{b;}sezller,

which concludes the proof. [ |
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