Pattern selection in the wake of fronts

Arnd Scheel, University of Minnesota

[Rothenmund, 1907], [Knöll, 1939]

IMA, 2012

Research supported by NSF
Outline

- Motivation & Models
- Invasion fronts
- Speed and pattern selection
Outline

• Motivation & Models

• Invasion fronts

• Speed and pattern selection
Liesegang patterns in nature and experiment

\[
2\text{NaOH} + \text{MgCl}_2 \rightarrow \text{Mg(OH)}_2
\]
Liesegang patterns in nature and experiment

[George & Varghese]
Liesegang patterns in nature and experiment

<table>
<thead>
<tr>
<th>Gel</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>Zn^{2+}</td>
<td>OH^-</td>
</tr>
<tr>
<td>Agar</td>
<td>Fe^{3+}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ag</td>
<td>Cl^-</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cu^{2+}</td>
<td>S^{2-}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cu^{2+}</td>
<td>S^{2-}</td>
</tr>
<tr>
<td>Agar</td>
<td>Mg^{2+}</td>
<td>OH^-</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ba^{2+}</td>
<td>SO_4^{2-}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>CO_3^{2-}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ni^{2+}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cr_2O_7^{2-}</td>
<td>Ag^{+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cr_2O_7^{2-}</td>
<td>Pb^{2+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>OH^-</td>
<td>Mg^{2+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Co^{2+}</td>
<td>OH^-</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ni^{2+}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cr^{3+}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Mg^{2+}</td>
<td>NH_3</td>
</tr>
<tr>
<td>Silica</td>
<td>HPO_4^{2-}</td>
<td>Ca^{2+}</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>Cu^{2+}</td>
<td>OH^-</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>Co^{2+}</td>
<td>OH^-</td>
</tr>
</tbody>
</table>
Liesegang patterns in nature and experiment

Lagzi

George & Varghese

Grzybowski

<table>
<thead>
<tr>
<th>Gel</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>Zn^{2+}</td>
<td>OH^{-}</td>
</tr>
<tr>
<td>Agar</td>
<td>Fe^{2+}</td>
<td>NH_{3}</td>
</tr>
<tr>
<td>Agar</td>
<td>I^{-}</td>
<td>Pb^{2+}</td>
</tr>
<tr>
<td>Agar</td>
<td>F^{-}</td>
<td>Pb^{2+}</td>
</tr>
<tr>
<td>Agar</td>
<td>Mn^{2+}</td>
<td>S^{2-}</td>
</tr>
<tr>
<td>Agar</td>
<td>Cu^{2+}</td>
<td>S^{2-}</td>
</tr>
<tr>
<td>Agar</td>
<td>Cu^{2+}</td>
<td>S^{2-}</td>
</tr>
<tr>
<td>Agaroose</td>
<td>Al^{3+}</td>
<td>OH^{-}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ba^{2+}</td>
<td>SO_{4}^{2-}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Co^{2+}</td>
<td>NH_{3}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ni^{2+}</td>
<td>NH_{3}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cr_{2}O_{3}^{2-}</td>
<td>Ag^{+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Cr_{2}O_{3}^{2-}</td>
<td>Pb^{2+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>OH^{-}</td>
<td>Mg^{2+}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Co^{2+}</td>
<td>OH^{-}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ni^{2+}</td>
<td>NH_{3}</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ca^{2+}</td>
<td>NH_{3}</td>
</tr>
<tr>
<td>Silica</td>
<td>HPO_{4}^{2-}</td>
<td>Ca^{2+}</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>Cu^{2+}</td>
<td>OH^{-}</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>Co^{3+}</td>
<td>OH^{-}</td>
</tr>
</tbody>
</table>

1 mm

1 mm
Some History

Reaction-diffusion in gels

- Raphael Liesegang (1896)
- Jablzinsky (1923) \(\Delta x_{j+1}/\Delta x_j \rightarrow \eta > 1 \)
- Matalon-Packter (1955):
 \[\eta \sim g_1([B]) + g_2([B])/[A], g_j \downarrow \]
- **Books:** H.K. Henisch (1988), Crystals in gels and Liesegang rings;
 B.A. Grzybowski (2009), Chemistry in Motion
- **Math:** Keller & Rubinow (1981), Hilhorst, vd Hout, Mimura, Ohnishi (2007,2009)
Reaction-Diffusion Models

Outer and inner electrolyte A, B; product C solute, E precipitate.

$$A + B \rightarrow C, \quad C \rightleftharpoons E$$

Models on $x \in \mathbb{R}_+$

$$a_t = d_a \Delta a - ab$$

$$b_t = d_b \Delta b - ab$$

$$c_t = d_c \Delta c - f(c, e) + ab$$

$$e_t = d_e \Delta e + f(c, e)$$

$$f(c, e) = e(1 - e)(e - a) + \gamma c$$

Initial and boundary conditions

$$t = 0 : b \equiv b_0 > 0, \ a, c, e \equiv 0 \quad \text{b.c.} : a|_{x=0} = a_0 \& \text{Neumann}$$
Reaction-Diffusion Models

Outer and inner electrolyte \(A, B \); product \(C \) solute, \(E \) precipitate.

\[A + B \rightarrow C, \quad C \rightleftharpoons E \]

Models on \(x \in \mathbb{R}_+ \)

\[a_t = d_a \Delta a - ab \]
\[b_t = d_b \Delta b - ab \]
\[c_t = d_c \Delta c - f(c, e) + ab \]
\[e_t = d_e \Delta e + f(c, e) \]

\[f(c, e) = e(1 - e)(e - a) + \gamma c \]

Initial and boundary conditions

\[t = 0 : b \equiv b_0 > 0, \quad a, c, e \equiv 0 \quad \text{b.c. } : a \big|_{x=0} = a_0 \& \text{Neumann} \]
Precipitation: super-saturation vs Cahn-Hilliard

Super-saturation

\[c_t = c_{xx} - f(c, e) + ab \]

\[e_t = d e c_{xx} + f(c, e) \]

[Ostwald 1897, Keller & Rubinow ’81]

Problems:

• not smooth, no width law
• numerically subtle
• no exotic patterns
• not structurally stable
Precipitation: super-saturation vs Cahn-Hilliard

Super-saturation
\[c_t = c_{xx} - f(c, e) + ab \]
\[e_t = d_e c_{xx} + f(c, e) \]

[Cahn-Hilliard 1897, Keller & Rubinow '81]

Cahn-Hilliard
\[u \sim e/(c + e) \in [0, 1] \]
\[u_t = -\Delta (d\Delta u + g(u)) + ab \]

[Cahn & Hilliard '58, Droz 90's]

• Phenomenological model for nucleation and growth
• limit of threshold kinetics description \(\gamma \to \infty \)

Problems:
• not smooth, no width law
• numerically subtle
• no exotic patterns
• not structurally stable

Problems:
• only phenomenological
• no quantitative comparisons
• no exotic patterns
• only one length scale, no \(d_c \)
Chemotaxis

u bacteria, v chemoattractant — Keller-Segel:

\[
 u_t = u_{xx} - (uv_x)_x
\]
\[
 v_t = \kappa v_{xx} - v + u
\]

Instability for high concentrations:

Collective aggregation

w/ M Holzer; REU Students K Bose, T Cox, S Silvestri, P Varin
Chemotaxis

u bacteria, v chemoattractant — Keller-Segel:

\[
\begin{align*}
 u_t &= u_{xx} - (uv_x)_x \\
 v_t &= \kappa v_{xx} - v + u
\end{align*}
\]

Instability for high concentrations:

Collective aggregation versus ripening

w/ M Holzer; REU Students K Bose, T Cox, S Silvestri, P Varin
More timely: Opinion dynamics

Opinion dynamics: x opinion, u people, v money

$$u_t = u_{xx}$$

$$v_t = \kappa v_{xx} - v$$

People communicate and spend,
More timely: Opinion dynamics

Opinion dynamics: x opinion, u people, v money

$$u_t = u_{xx}$$

$$v_t = \kappa v_{xx} - v + u$$

People communicate and spend, people make money
More timely: Opinion dynamics

Opinion dynamics: x opinion, u people, v money

$$u_t = u_{xx} - (uv_x)_x$$

$$v_t = \kappa v_{xx} - v + u$$

People communicate and spend, people make money, money attracts opinion...
More timely: Opinion dynamics

Opinion dynamics: x opinion, u people, v money

$$u_t = u_{xx} - (uv_x)_x$$
$$v_t = \kappa v_{xx} - v + u$$

People communicate and spend, people make money, money attracts opinion…

Instability when there’s too much money:

Compromise
More timely: Opinion dynamics

Opinion dynamics: x opinion, u people, v money

\[u_t = u_{xx} - (uv_x)_x \]
\[v_t = \kappa v_{xx} - v + u \]

People communicate and spend, people make money, money attracts opinion…

Instability when there’s too much money:

Compromise versus winner-takes-all
Different: surface-roughening and ion beams

- Surface bombardment with ion beams \rightarrow instabilities
- Surface roughness on nano-scales;
- Highly disordered structure
- But masked fronts create highly organized surface ripples, nano-dots, ...

[Gelfand&Bradley]
Pattern formation: fronts versus noise

\[
\begin{align*}
 c_t &= \Delta c - e(1 - e)(e - a) - \gamma c \\
 e_t &= e(1 - e)(e - a) + \gamma c
\end{align*}
\]

Linear Stability of equilibria

Perturbing \(e = a, c = 0 \) random amplitudes

random locations

w/ Qiliang Wu, REU students M Kotzagiannidis, J Peterson, J Redford
Invasion fronts: free and triggered

Spatio-temporal source term \(h(t, x) \), depositing mass

\[
\begin{align*}
 c_t &= \Delta c - f(c, e) + h(t, x) \\
 e_t &= \kappa \Delta e + f(c, e)
\end{align*}
\]

Basic example: \(h(t, x) = H(x - st) \), \(H \) localized

Fast source \(s \sim 1 \)

Slow source \(s \ll 1 \)
Invasion fronts: free and triggered

Spatio-temporal source term $h(t, x)$, depositing mass

\[
\begin{cases}
 c_t &= \Delta c - f(c, e) + h(t, x) \\
 e_t &= \kappa \Delta e + f(c, e)
\end{cases}
\]

Basic example: $h(t, x) = H(x - st)$, H localized

Fast source $s \sim 1$ \hspace{2cm} **Slow source** $s \ll 1$
Multi-dimensional patterns

A plethora of patterns from “growth” and “threshold conversion”:

Wet stamping — isotropic

— anisotropic

trigger front and inhomogeneity
Multi-dimensional patterns

A plethora of patterns from “growth” and “threshold conversion”:

Wet stamping — isotropic — anisotropic

trigger front and inhomogeneity
Outline

• Motivation & Models
• Invasion fronts
• Speed and pattern selection
Existence of invasion fronts

Two approaches:

Robustness:
Show that linearization at a given front is Fredholm index 0 — without proving existence!

Existence:
Show that fronts exist using Conley’s index!
Robustness — phenomena

Initial conditions \((c \equiv 0, \ e \equiv a)\) + perturbation near \(x = 0\)

\[
\begin{align*}
\gamma &= 0.001, \ a = 0.04 & \gamma &= 0.001, \ a = 0.4 & \gamma &= 1.5, \ a = 0.22
\end{align*}
\]

- **Bulk Front**
- **Transient Pattern**
- **Persistent Pattern**

\[
\begin{align*}
\frac{ct}{c} &= c_{xx} - e(1-e)(e-a) - \gamma c \\
\frac{et}{e} &= de_{xx} + e(1-e)(e-a) + \gamma c
\end{align*}
\]
Robustness — results

Theorem [R Goh, S Mesuro, S.]

Pattern-forming fronts are robust iff the pattern in the wake is stable with respect to co-periodic perturbations

Remarks

- Effectively discriminate between transient and persistent patterns!
- All periodic patterns are unstable on $x \in \mathbb{R}$ or period 2!
- Bulk fronts are pushed fronts; [van Saarloos]
- The transition from bulk to pattern-forming is an “essential, pointwise” Hopf bifurcation at $a_*(d)\ldots$
Robustness — proofs

- Traveling-wave equation for \(u = (c, e)(x - st, kx) \) as dyn’ sys’

 \[
 \begin{align*}
 u_\xi &= -k \partial_y u + v \\
 v_\xi &= -k \partial_y v - D^{-1} (F(u) + c(v - k \partial_y u))
 \end{align*}
 \]
Robustness — proofs

• Traveling-wave equation for \(u = (c, e)(x - st, kx) \) as dyn’ sys’

\[
\begin{align*}
 u_\xi &= -k \partial_y u + v \\
 v_\xi &= -k \partial_y v - D^{-1} (F(u) + c(v - k \partial_y u))
\end{align*}
\]

• Invasion fronts \(\iff \) Heteroclinic orbits \(u^-(y) \rightarrow u^+(y) \) (but ill-posed!)
Robustness — proofs

• Traveling-wave equation for $u = (c, e)(x - st, kx)$ as dyn’ sys’

 $$u_\xi = -k \partial_y u + v$$
 $$v_\xi = -k \partial_y v - D^{-1} (F(u) + c(v - k \partial_y u))$$

• Invasion fronts \iff Heteroclinic orbits $u_-(y) \rightarrow u_+(y)$ (but ill-posed!)

• Robustness \iff transverse intersections $W^s_+ \cap W^-_u$
Robustness — proofs

- Traveling-wave equation for $u = (c, e)(x - st, kx)$ as dyn’ sys’

 $u_\xi = -k \partial_y u + v$

 $v_\xi = -k \partial_y v - D^{-1}(F(u) + c(v - k \partial_y u))$

- Invasion fronts \iff Heteroclinic orbits $u^-(y) \longrightarrow u^+(y)$ (but ill-posed!)

- Robustness \iff transverse intersections $W^s_+ \cap W_u^-$

- Ill-posed, pseudo-elliptic: relative Morse indices!
Robustness — proofs

• Traveling-wave equation for \(u = (c, e)(x - st, kx) \) as dyn' sys'
 \[
 u_\xi = -k \partial_y u + v \\
 v_\xi = -k \partial_y v - D^{-1} (F(u) + c(v - k \partial_y u))
 \]

• Invasion fronts \iff Heteroclinic orbits \(u_*(y) \rightarrow u_*^+(y) \) (but ill-posed!)

• Robustness \iff transverse intersections \(W^s_+ \cap W^-_u \)

• Ill-posed, pseudo-elliptic: relative Morse indices!

Linearize at \(u^+_\pm(y) \) and count dimension of \(W^s_+, W^-_u \):

\[
\iota : (u_+ \in TW^s_+, u_- \in TW^-_u) \mapsto u_+ - u_-
\]

Index theorem e.g. [Sandstede,S. '01]: Fredholm = relative Morse:

\[
i_F(\iota) = i_M(u^-_*) - i_M(u^+_*)
\]
Resonant modes and Morse indices

How do we compute $i_M(u_\pm)$? \(\rightarrow\) Homotopies!

Spatial growth modes $u(y)e^{\nu \xi}$ satisfy

$$-s\nu u = D(k\partial_y + \nu)^2u + F'(u_{\star})u$$

Idea: Homotope $u_{\star} = u_{\star}^- \ldots u_{\star}^+$ and count ν's crossing \mathbb{R}
Resonant modes and Morse indices

How do we compute $i_M(u^\pm_*)$? \[\rightarrow\] Homotopies!

Spatial growth modes $u(y)e^{\nu \xi}$ satisfy

$$-s\nu u = D(k\partial_y + \nu)^2u + F'(u_*)u$$

Idea: Homotope $u_* = u^-_* \ldots u^+_*$ and count ν's crossing $i\mathbb{R}$

Here's how: homotope to $\lambda = +\infty$ for $u_* = u^\pm_*$:

$$\lambda u - s\nu u = D(k\partial_y + \nu)^2u + F'(u_*)u$$

where we can neglect F' and hence the dependence on u:

Crossings in λ \iff resonant unstable modes
Existence: The Cahn-Hilliard equation

A model for phase separation, \(u \) order parameter

\[
 u_t = -(u_{xx} + u - u^3)_{xx}
\]

on \(\mathbb{R}/L\mathbb{Z} \), say

Mass conservation

\[
 m(u) = \int u
\]

Energy dissipation

\[
 E(u) = \int u_x^2 - u^2 + \frac{1}{2} u^4
\]

Gradient structure

\[
 u_t = -\nabla_{H^{-1}} E(u)
\]
Equilibria and attractors

Dynamics on attractor: equilibria and heteroclinic connections

\[
|m| < \frac{1}{\sqrt{5}}
\]

\[
\frac{1}{\sqrt{5}} < |m| < \frac{1}{\sqrt{3}}
\]

\[
\frac{1}{\sqrt{3}} < |m| < 1
\]

[Grinfeld, Novick-Cohen]
Spinodal decomposition fronts

Main Theorem [S.]

For each $|m| < 1/\sqrt{3}$, there exists a modulated front solution

$$u_*(x - s_{\text{lin}}t, k_{\text{lin}}x), \quad u_*(\xi, y) = u_*(\xi, y + 2\pi)$$

with asymptotics

$$\begin{cases}
 u_*(\xi, y) \to m, & \xi \to +\infty, \text{ unif. in } y, \\
 u_*(\xi, y) \to u_-, & \xi \to -\infty, \text{ unif. in } y,
\end{cases}$$

More specifically,

- For $|m| < 1/\sqrt{5}$, u_- has minimal period $2\pi/k_{\text{lin}}$.

- For $1/\sqrt{5} < |m| < 1/\sqrt{3}$, exist chain of waves $u_{*,1}, \ldots, u_{*,j}$ so that the last wave connects to u_-,j with minimal period $2\pi/k_{\text{lin}}$.
"Translate" Lyapunov function \mathcal{L} and mass conservation \mathcal{I}:

$$
\mathcal{L}(u) = \int_0^{2\pi} \left(\frac{1}{2} u_\xi^2 - G(u) - ku_\xi u_\tau - \frac{1}{s} \theta \theta_\xi \right) d\tau
$$

$$
\mathcal{I}(u) = \int (su - \theta_\xi)
$$

with $G'(u) = u - u^3$, $\theta = u_\xi + G'(u)$
Existence — Outline

• "Translate" Lyapunov function \mathcal{L} and mass conservation \mathcal{I}:

$$\mathcal{L}(u) = \int_0^{2\pi} \left(\frac{1}{2} u_\xi^2 - G(u) - ku_\xi u_\tau - \frac{1}{s} \theta \theta_\xi \right) d\tau$$

$$\mathcal{I}(u) = \int (su - \theta)$$

with $G'(u) = u - u^3$, $\theta = u_\xi \xi + G'(u)$

• H^{-1}-estimates: define $\partial_{\tau} \phi = u - \int_{\tau} u$!

$$\int_{\xi} \int_{\tau} (\phi^2_{\xi\xi} + \phi^4_\xi) \chi(\xi) < \infty, \quad \int_{\xi} \left(\int_{\tau} su - \mathcal{I} \right)^2 < \infty$$
Existence — Outline

• "Translate" Lyapunov function \mathcal{L} and mass conservation \mathcal{I}:

$$
\mathcal{L}(u) = \int_0^{2\pi} \left(\frac{1}{2} u_\xi^2 - G(u) - k u_\xi u_\tau - \frac{1}{s} \theta \theta_\xi \right) \, d\tau
$$

$$
\mathcal{I}(u) = \int (su - \theta_\xi)
$$

with $G'(u) = u - u^3$, $\theta = u_\xi \xi + G'(u)$

• H^{-1}-estimates: define $\partial_{\tau} \phi = u - \int_{\tau} u$!

$$
\int_{\xi} \int_{\tau} (\phi_{\xi \xi}^2 + \phi_{\xi}^4) \chi(\xi) < \infty, \quad \int_{\xi} \left(\int_{\tau} su - \mathcal{I} \right)^2 < \infty
$$

• Galerkin approximations in τ, a priori estimates, give Conley index of bounded solutions as isolated invariant set
Existence — Outline

- "Translate" Lyapunov function \mathcal{L} and mass conservation \mathcal{I}:

$$
\mathcal{L}(u) = \int_0^{2\pi} \left(\frac{1}{2} u_\xi^2 - G(u) - ku_\xi u_\tau - \frac{1}{s} \theta \theta_\xi \right) \, d\tau
$$

$$
\mathcal{I}(u) = \int (su - \theta_\xi)
$$

with $G'(u) = u - u^3$, $\theta = u_\xi\xi + G'(u)$

- H^{-1}-estimates: define $\partial_\tau \phi = u - \int_\tau u$

$$
\int_\xi \int_\tau (\phi_{\xi\xi}^2 + \phi_\xi^4) \chi(\xi) < \infty,
\int_\xi \left(\int_\tau su - \mathcal{I}\right)^2 < \infty
$$

- Galerkin approximations in τ, a priori estimates, give Conley index of bounded solutions as isolated invariant set

- Morse indices and connection matrices [Franzosa],[Mischaikow]

→ heteroclinic orbits
Outline

• Motivation & Models

• Invasion fronts

• Speed and pattern selection
Spreading speeds

Absolute and convective instabilities: $u_0(x)$ compactly supported

pointwise growth pointwise decay spreading speed

Linear dispersion relation

$u = (c, e) \sim (c_0, e_0) e^{\lambda t + \nu x}$,

$D(\lambda, \nu) = 0$

Pointwise growth modes (λ, ν):

$D(\lambda, \nu) = 0$,

$\partial_\nu D(\lambda, \nu) = 0$ + “pinching”

Classic "Lemma": Typically,

pointwise instability \iff unstable pointwise modes, $\text{Re } \lambda > 0$

Pointwise spreading speed:

$s_{pt} := \sup \{ s | \text{ pointwise unstable in frame } \xi = x - st \}$

Selected wavenumber:

$k_{lin} = \omega_{lin} / s_{pt}$ where $i\omega_{lin}$ neutral pointwise growth mode at
Spreading speeds — subtleties

The previous slide often gives the wrong answer [w/ M Holzer]:

- Linear speeds $< \llap{\text{“pinched speed”}}$

\[
\begin{align*}
 u_t &= u_x + u, \\
 v_t &= -v_x + v
\end{align*}
\]

has pointwise decay, yet a pinched double root at $\lambda = 1$

- Linear speed $< \llap{\text{nonlinear speed: \rightarrow pushed fronts}}$

\[
\begin{align*}
 u_t &= u_{xx} + u(1 - u)(u - a), \\
 a &< 1/3
\end{align*}
\]

- Nonlinear speed $< \llap{\text{linear speed \rightarrow Lotka-Volterra}}$

- Linear speed $< \llap{\text{nonlinear speed: \rightarrow staged invasion}}$

Related question: What happens in the wake of invasion?
Spreading speeds — multi-d

Consider isotropic system, initial conditions $u_{cpt}(x)e^{iky}$.
Define transverse modulated spreading speeds $s_{\text{lin}}(k)$

Conjecture... Theorem? [R Goh, M Holzer, S.]

$s_{\text{lin}}(k) \leq s_{\text{lin}}(0)$

Linear theory *always* predicts stripes in the leading edge of invasion fronts

Other patterns emerge through pushed fronts or staged invasion:

Cahn-Hilliard in strip
Coupled KPP

Toy model for staged invasion

\[u_t = u_{xx} + u(1 - u) \]

\[v_t = dv_{xx} + g(u)v - v^3 \]

How do compactly supported initial data evolve?

- **u-equation**: convergence to critical KPP front \(s_u = 2 \)

- **v-equation**: speeds
 - \(u = 0 \): \(s_v = 2 \sqrt{dg(0)} \)
 - \(u = 1 \): \(s_v = 2 \sqrt{dg(1)} \)

Question: Determine the \(v \)-invasion speed!
Coupled KPP — phenomena

\[u_t = u_{xx} + u(1 - u) \]

\[v_t = dv_{xx} + g(u)v - v^3 \]

“Instantaneous” \(v \)-speed:

\[s_v = -2 \sqrt{d g(u)} \]

E.g. \(g(u) = 0.3 + a_1 u - 3u^2 \)

3 Regimes:
- locked regime (strong inhomogeneity)
- accelerated regime (intermediate)
- pulled regime (weak, uncoupled)
Resonance poles, locked, and accelerated fronts

Linearizing v-equation along u-front gives

$$v_t = d v_\xi \xi + 2 v_\xi + g'(u_{KPP}) v = \mathcal{L}u$$

Resonance pole λ_{rp} of \mathcal{L} determine regime:

- $\lambda_{rp} > 0 \implies$ locked fronts, $s_v = 2$
- $0 > \lambda_{rp} > -\lambda_* \implies$ accelerated fronts, $s_v > s_v^1 = \sqrt{dg(1)}$

Acceleration since resonance mode induces spreading:

$$v(\xi) \sim e^{\lambda_{rp} t + \nu_+} \text{ for } \xi \to +\infty, s_v = \lambda/\nu_+$$

Note:

u-front accelerates v-front by fixed amount while separation distance goes to infinity!

Interaction force growing exponentially with distance
Accelerated fronts — proofs

Idea:
Construct steep sub- and supersolutions based on the resonance pole

Similar technique: [Nolen, Roquejoffre, Ryzhik, Zlatos 2012] → KPP with steady inhomogeneity, compact support

\[u_t = u_{xx} + g(x)u - u^2 \]
Locked fronts

Theorem
Suppose $\lambda_{rp} > 0$, then there exists stable locked front, v-component has steep exponential decay

$$u = u_{kpp}(x - 2t), \ v_{lock}(x - 2t) \sim e^{-d^{-1}(1 + \sqrt{1 + dg(1)})}\xi$$

For $\lambda_{rp} > 0$, small, the bifurcation to locked fronts is supercritical and the separation distance scales with

$$\frac{1}{2\nu_v^+} \log(\lambda_{rp}) \text{ if } 2\nu_v^+ - \nu_v^- > 0$$

$$\frac{1}{\nu_v^-\nu_v^+} \log(\lambda_{rp}) \text{ if } 2\nu_v^+ - \nu_v^- < 0$$

Proof Heteroclinic orbit flip, Shilnikov coordinates after normal form transformations that straighten fibrations [Homburg].
Comparison with simulations

Fix \(g(u) = 0.3 + \alpha(u - u^2), \ d = 1. \)

Speed versus prediction
locked, accelerated, uncoupled

Separation versus prediction, locked case
Summary and references

Pattern-forming fronts need more attention!

• existence and robustness
• speeds and wavenumber predictions — 1-d
• some results for multi-d, staged invasion

References

• existence & robustness:
 A Scheel, *Spinodal decomposition and coarsening fronts in the Cahn-Hilliard equation*, very soon

• staged invasion and anomalous spreading: M Holzer, A Scheel,
 A slow pushed front in a Lotka-Volterra competition model, Nonlinearity 2012
 Accelerated fronts in a two stage invasion process, preprint