(1) Consider the feedforward chain,

\[x'_j = x_{j-1} - x_j \in \mathbb{R}, \]

where at each lattice site \(j \) the system attempts to "mimic" the left neighbor, that is, for fixed \(x_{j-1} \), \(x_j \) will relax to \(x_{j-1} \) (why?).

(a) Take \(1 \leq j \leq N \) and set \(x_0 \equiv 0 \). Write the system in vector form \(x' = Ax \) and find the eigenvalues. Conclude asymptotic stability.

(b) Take \(1 \leq j \leq N \) but now set \(x_0 \equiv x_N \) in the equation for \(x_1 \) (the chain is a ring!). Compute the eigenvalues and conclude stability (but not asymptotic stability). \textit{Hint: To find the eigenvalues, use discrete Fourier transform \(x_j = e^{ij\sigma} \) with \(\sigma \) such that \(x_N = x_0 \).}

(c) Solve numerically for large \(N \), \(x_j(t = 0) \equiv 1 \). Demonstrate and explain why the limits \(N \to \infty \) and \(t \to \infty \) do for the linear evolution do not commute, that is,

\[\lim_{N \to \infty} \lim_{t \to \infty} |e^{At}| = 0, \quad \lim_{N \to \infty} \lim_{t \to \infty} \lim_{N \to \infty} |e^{At}| = 1. \]

(d) Consider an \(\varepsilon \)-feedback, \(x'_1 = \varepsilon x_N - x_1 \). Find the eigenvalues and conclude that for \(\varepsilon \) small fixed, we find arbitrarily slow decay when \(N \) is large. How large does \(N \) have to be to create an eigenvalue \(\lambda = -0.1 \) when \(\varepsilon = 10^{-8} \)?

(2) Construct an example where \(A(t) = A(t + 1) \) is asymptotically stable for every \(t \) but not the non-autonomous equation. \textit{Hint: Try \(A(t) \) piecewise constant, with \(A(t) = A_1, 0 < t < 1/2, \) and \(A(t) = A_2, 1/2 < t < 1, \) and choose \(A_j \) asymptotically stable but not commuting.}

\textit{Homework is due on Wednesday, November 7, in class.}

\textit{This homework counts for extra credit.}

\textit{Those who may, vote before you turn this in!}