(1) Consider the bifurcation problem for the ODE $A \in \mathbb{C} \sim \mathbb{R}^2$,

$$A' = (\mu^2 + i)A + \mu(1 + i)A|A|^2 + A\bar{A}^2 + iA^3.$$

We wish to find all branches of periodic solutions bifurcating from the origin.

(i) Consider the equation at $\mu = 0$, $A' = iA + \bar{A}A^2 + iA^3$ and perform a normal form change of variables $A = A_1 + \alpha_1 A_1 \bar{A}_1^2 + \alpha_2 A_1^3$. Find α_j so that cubic terms vanish in the resulting equation.

(ii) Argue that a second normal form coordinate change will eliminate all quintic terms except for a term of the form $\beta A|A|^4$ for some $\beta \in \mathbb{C}$. Find $\beta = -(1+i)!$

(iii) Study the resulting leading-order system

$$A' = (\mu^2 + i)A + \mu(1 + i)A|A|^2 - A|A|^4,$$

using an Ansatz $A = re^{i\omega t}$ using Newton’s polygon for variables r, μ in the real part of the equation to determine all bifurcating branches.

(iv) Find expansions for r and ω in terms of μ for periodic orbits.

(2) The equation

$$b' = v - sb, \hspace{1cm} v' = -b^2(\theta - v) + b$$

with parameters s, θ arises in a model for traveling waves in vegetation patterns. In the parameter plane $\theta, s \geq 0$, plot curves of saddle-node bifurcations and mark regions with 1, 2, or 3 equilibria. Also find all Hopf bifurcations and show that the curve of Hopf bifurcations in the $\theta - s$-plane terminates on the saddle-node curve in a Bogdanov-Takens bifurcation.

Optional: Compute the direction of branching of the Hopf bifurcation, that is, if the Hopf bifurcation is sub- or supercritical in the parameter θ for fixed s. You may use a formula for the cubic coefficient from the literature and Mathematica to evaluate derivatives.
(3) Consider
\[z' = -2z + (A^2 + \bar{A}^2) + z^2, \quad A' = iA - 3iz\bar{A}, \]
with \(A \in \mathbb{C}, z \in \mathbb{R}, \) near \(A = z = 0. \) Determine if the origin is asymptotically stable. For this, compute the center manifold to quadratic order, \(z = h(A, \bar{A}), \) and transform the reduced equation for \(A \) into cubic normal form to determine if the origin is stable within the center manifold.

Four points each exercise. Homework is due on Wednesday, February 27, in class.