(1) Find a horseshoe in the cat map (draw the picture!).

(2) Compute the kneading invariant of an infinitely renormalizable unimodal map (see Ex. 3 §1.18, in [Devaney]).

(3) Show that the rotation number is a continuous function of a circle homeomorphism.

(4) Suppose that a homeomorphism \(f \) on a compact manifold is topologically transitive, that is, for all nonempty open sets \(U, V \) there exists an \(N \) such that \(f^N(U) \cap V \neq 0 \). Show that \(f \) has a dense orbit.

(5) For \(f : I \to I \) unimodal, \(I = [0, 1] \), assume that the critical point is periodic, \(f^\ell(c) = c \) for some \(\ell > 0 \). Show that \(f \) is not structurally stable, that is, for each \(\varepsilon > 0 \) there exists \(g \) with \(\sup |g - f| < \varepsilon \) such that we cannot find a homeomorphism \(h \) of \(I \) such that \(f \circ h = h \circ g \).

(6) Suppose \(f : I \to I \), continuous, possesses a periodic orbit of period \(p \geq 3 \), with the ordering

\[
 f(x_j) = x_{j+1}, x_j < x_{j+1}, j = 1, \ldots, p-1, f(x_p) = x_1.
\]

Conclude that \(f \) has periodic orbits of any period.

(7) Find the parameter-value \(\mu_* > 0 \) of the first period-doubling in the cubic family \(f(x) = \mu(x - x^3) \) and find an expansion for the period-two orbit \(x_1(\mu), x_2(\mu) \) for \(\mu \sim \mu_* \). Show how you compute the expansion using bifurcation theory: solve \(f(x) = y, f(y) = x \) near \(\mu = \mu_* \), \(x = y = x_* \), the fixed point at criticality using Lyapunov-Schmidt reduction. You may compare with a direct computation in Mathematica.

4 points each exercise for extra credit, due on Wednesday, April 10, in class.