Thanks to the organizers for inviting me to speak. Convention: everything in this talk will be homotopy invariant, so all of my categories will be ∞-categories, all of my colimits homotopy colimits, and so on. I’ll begin by giving rapid-fire refreshers on both functor calculus and equivariant stable homotopy theory.

1 Funct or calculus

All results, unless otherwise stated, are due to Goodwillie. Let \mathbf{Sp} be the category of spectra and let $F : \mathbf{Sp} \to \mathbf{Sp}$ be a functor. All of our functors will be reduced: that is, $F(*) = *$.

An n-cube of spectra will be called strongly cocartesian if it’s constructed by writing down n morphisms $X \to Y_1, X \to Y_2, \cdots, X \to Y_n$ and then taking iterated pushouts. (Example with 3-cube.) F will be called n-excisive if it takes strongly cocartesian n-cubes to cartesian n-cubes - cubes which are limit diagrams, or equivalently (since we’re stable) colimit diagrams.

Any functor has a right universal n-excisive approximation $F \to P_n F$. F will be called n-homogeneous if $F = P_n F$ and $P_{n-1} F = 0$.

Proposition 1.1. F is n-homogeneous if and only if it’s equivalent to a functor of the form $F(X) = (D \wedge X^n)_{h \Sigma_n}$ for some spectrum D with Σ_n-action.

D is supposed to look like a Taylor coefficient; this formula is a categorification of

$$f(x) = \frac{d x^n}{n!}.$$

For example, the fiber of $P_n F \to P_{n-1} F$ is n-homogeneous. The coefficient spectrum D_n arising here is called the nth derivative of F. So we have a fiber sequence

$$(D_n \wedge (-)^n)_{h \Sigma_n} \to P_n F \to P_{n-1} F.$$

Stratified categories, geometric fixed points and a generalized Arone-Ching theorem: talk notes

Saul Glasman
In particular, suppose \(F \) is 2-excisive. Then \(P_1F \) is 1-homogeneous, and so we have a fiber sequence

\[
(D_2 \wedge X \wedge X)_{\wedge \Sigma_2} \to F(X) \to D_1 \wedge X.
\]

The last general thing I want to say about calculus is this proposition - I’m not sure who to credit with this, but it’s well-known.

Proposition 1.2. If \(F \) is \(n \)-excisive, then it’s determined by its restriction to the full subcategory of \(\text{Sp} \) spanned by the wedges of up to \(n \) copies of the sphere spectrum \(\Sigma \).

This suggests that \(n \)-excisive functors might be somehow combinatorial at heart. We’ll return to this.

2 Equivariant homotopy theory

Let \(G \) be a finite group. The first realization in equivariant stable homotopy theory is that a \(G \)-spectrum is much more than a spectrum with a \(G \)-action. There are several models of what we call genuine \(G \)-spectra, but in this talk by a \(G \)-spectrum we’ll mean a spectral Mackey functor, which I’ll now explain.

Let \(C \) be a category with pullbacks. Then we can form the effective Burnside category of \(C \), denoted \(A_{\text{eff}}(C) \), whose objects are those of \(C \) and in which morphisms are spans (draw). Compositions are defined by forming pullbacks.

If \(C \) is disjunctive - that is, it has finite coproducts and pullbacks distribute over them - then \(A_{\text{eff}}(C) \) is semiadditive - that is, it has a zero object and finite direct sums, so that finite coproducts coincide with finite products and are given by the coproduct in \(C \).

Definition 2.1. A Mackey functor on \(C \) is a direct-sum-preserving functor from \(A_{\text{eff}}(C) \) to \(\text{Sp} \).

Definition 2.2. A \(G \)-spectrum is a Mackey functor on the category \(F^G \) of finite \(G \)-sets.

What does this amount to? Let’s restrict attention to the irreducible \(G \)-sets of the form \(G/H \), where \(H \) is a subgroup of \(G \). Then a \(G \)-spectrum \(E \) gives a spectrum \(E^H \) - the “genuine fixed points” - for each \(H \), which has an appropriate group action, and whenever \(H \leq K \), we get a restriction map \(E^K \to E^H \) and a transfer map \(E^H \to E^K \).

This picture is adapted to dealing with the genuine fixed points of spectra, which are both a left and a right adjoint and which are compatible with \(\Omega^\infty \) but not as easily related to \(\Sigma^\infty \). There’s another notion of fixed points - the geometric fixed points \(E \mapsto \Phi^H E \) - which are a left adjoint only, but play well with the formation of suspension spectra.

Here’s an important example of a \(G \)-spectrum. Let \(A \) be a spectrum, and form \(A^G \): the smash product of copies of \(A \) indexed by \(G \), with \(G \) permuting
the factors, also known as the “HHR norm”. Making this into a genuine G-spectrum is surprisingly subtle - one can construct it at the point set level, and then proving homotopy invariance is a nightmare, but from the Mackey functor point of view it’s not even how to start. This is because the genuine fixed point spectrum $(A^G)^G$ is full of mysteries; for example, it’s intimately connected to Witt vectors, which is something I’m still amazed by every day. I mean, all you did was take some fixed points.

On the other hand, we have

$$\Phi^G(A^G) \simeq A.$$

This raises the question: can we present a G-spectrum in terms of its geometric fixed point spectra?

3 The dictionary

Now suppose that $G = C_2$. Then there is a “norm cofibration sequence”, due to Greenlees and May:

$$E_{hG} \rightarrow E^G \rightarrow \Phi^G E.$$

In particular, if E is the norm $A \wedge A$, then this sequence takes the form

$$(A \wedge A)_{hC_2} \rightarrow (A \wedge A)^{C_2} \rightarrow \Phi^{C_2}(A \wedge A) \simeq A.$$

Strikingly, this sequence coincides with the Taylor tower for the 2-excisive functor $A \mapsto (A \wedge A)^{C_2}$. We see that the first and second derivatives of this functor are both \mathbb{S}. In fact, this is the motivating case for the following even more striking theorem:

Theorem 3.1 (?). There is an equivalence between the category of C_2-spectra and the category of 2-excisive functors which takes a C_2-spectrum D to the functor

$$A \mapsto (A \wedge A \wedge X)^{C_2}.$$

This theorem establishes a dictionary between equivariance and calculus, which I’ll deliberately write without reference to C_2 or the number 2:

<table>
<thead>
<tr>
<th>G-spectrum E</th>
<th>n-excisive functor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm cofibration sequence and its generalizations</td>
<td>Taylor tower</td>
</tr>
<tr>
<td>Geometric fixed points</td>
<td>Derivatives</td>
</tr>
<tr>
<td>Genuine fixed points for full group E^G</td>
<td>Value $F(2)$</td>
</tr>
<tr>
<td>Presentation by geometric fixed points</td>
<td>Arone-Ching theorem</td>
</tr>
</tbody>
</table>

Challenge: can we come up with a framework that incorporates both these phenomena?
4 Epiorbital categories

The answer is yes, because \(n \)-excisive functors are Mackey functors too. Before I say exactly how, I want to fix a nice class of indexing categories:

Definition 4.1. A category is **epiorbital** if

1. it’s an essentially finite 1-category, i.e. it has finitely many isomorphism classes of objects and finite hom-sets;
2. all morphisms are epimorphisms;
3. pushouts and coequalizers exist.

The first two conditions imply that if \(X \) and \(Y \) are two objects and morphisms between them exist in each direction, then those morphisms are isomorphisms. So an epiorbital category should be thought of as a “poset with automorphisms”.

The most important examples for the purposes of this talk are the orbit category \(\mathcal{O}_G \) of a finite group \(G \) (i.e. irreducible \(G \)-sets) and the category \(\mathcal{F}_{\leq n} \) of finite sets of cardinality at most \(n \) and surjections.

Proposition 4.2. If \(C \) is an epiorbital category then the category \(C^{\Pi} \) obtained by freely adjoining finite coproducts to \(C \) is disjunctive. (Remember that disjunctive categories are the ones whose categories of spans behave nicely.)

Pretheorem 4.3 (G.). The category of \(n \)-excisive functors \(\mathbf{Sp} \to \mathbf{Sp} \) is equivalent to the category of Mackey functors on \((\mathcal{F}_{\leq n})^{\Pi} \). If \(F \in \text{Fun}^{n-\text{exc}}(\mathbf{Sp}, \mathbf{Sp}) \), the value of the corresponding Mackey functor on \(S \) is the cross effect

\[
\text{cr}_S F(S, S, \cdots, S).
\]

This has pretheorem status in that I know it’s true and I know how to prove it, but I have to nail down some technicalities about semiadditive \(\infty \)-categories. Note that this is a topological version of an algebraic theorem by Baues, Dreckmann, Franjou and Pirashvili.

What’s the analog of geometric fixed points for Mackey functors on an arbitrary epiorbital category? Let \(C \) be epiorbital and \(X \in C \). Let \(C^{\leq X} \) be the full subcategory of \(C \) spanned by the objects admitting a map from \(X \); these are all different for nonisomorphic \(X \). There’s a functor

\[
j_X : C^{\Pi} \to (C^{\leq X})^{\Pi}
\]

given by setting all objects outside \(C^{\leq X} \) to the empty set; then the “geometric fixed points at \(X \)” are given by left Kan extension along \(j_X \). This recovers ordinary geometric fixed points in the case of \(G \)-spectra and derivatives in the case of \(n \)-excisive functors.
5 The reconstruction theorem

Now we’ll investigate how to reconstruct Mackey functors on epiorbital categories from their geometric fixed point spectra. For motivation, let’s first return to the case of C_2-spectra. We have a map of cofiber sequences

$$
\begin{array}{ccc}
E_{hC_2} & \rightarrow & E^{C_2} \\
\downarrow & & \downarrow \\
E_{hC_2} & \rightarrow & E^{hC_2}
\end{array}
\rightarrow
\begin{array}{ccc}
\Phi C_2 E & \rightarrow & \Phi^{C_2} E \\
\downarrow & & \downarrow \\
E_{hC_2} & \rightarrow & E^{hC_2}
\end{array}
\rightarrow
\begin{array}{ccc}
E_{hC_2} & \rightarrow & E^{hC_2}
\end{array}

where the bottom cofiber sequence is the definition of the Tate spectrum E^{tC_2}. Thus the right hand square is a pullback square, and we learn that the glue needed to reconstruct E^{C_2} from the geometric fixed point spectra of E is the map from $\Phi^{C_2} E$ to E^{tC_2}. In previous work on this subject, Abram and Kriz have generalized this “fracture square” to G-spectra for abelian G, and Arone and Ching have given an analog for n-excisive functors. Our common generalization is as follows:

Theorem 5.1 (G.). Let M be a Mackey functor on an epiorbital category C. Then there is an explicit cartesian (Iso C)-cube with limit M whose other vertices are given by homotopy-theoretic constructions (homotopy orbits and fixed points, Tate spectra) on geometric fixed point spectra of M.

OK, that’s a tangle. Let’s see it in action. We’ve seen the case where $C = O_{C_2}$, and C_p for prime p is exactly the same. Let’s take $O_{C_{p^2}}$ this time. For convenience, I’ll evaluate the entire cube of Mackey functors on G/G.

\[
\begin{array}{ccc}
X^{hC_{p^2}} & \rightarrow & (X^{tC_{p^2}})^{hC_{p^2}} \\
\downarrow & & \downarrow \\
(X^{C_{p^2}})^{hC_{p^2}} & \rightarrow & (\Phi^{C_{p^2}} X)^{hC_{p^2}}
\end{array}
\rightarrow
\begin{array}{ccc}
X^{hC_{p^2}} & \rightarrow & (X^{tC_{p^2}})^{hC_{p^2}} \\
\downarrow & & \downarrow \\
(X^{C_{p^2}})^{hC_{p^2}} & \rightarrow & (\Phi^{C_{p^2}} X)^{tC_{p^2}}
\end{array}
\rightarrow
\begin{array}{ccc}
0
\end{array}
\]

The $(X^{tC_{p^2}})^{hC_{p^2}}$ entry requires a little computation. The deepest entry turns out to be 0, and it’s not unusual for all entries at depth at least 3 to be 0.

6 Chromatic theory

Fix a prime p and let $K(n)$ be the nth Morava K-theory. It’s a deep theorem coming from I guess work of Greenlees-Sadofsky and Hovey-Sadofsky that Tate
spectra all vanish in the category of $K(n)$-local spectra. Nick Kuhn used this to show that Taylor towers all split in the $K(n)$-local category.

Here’s a general theorem along those lines:

Proposition 6.1 (G.). Every entry of the cube of depth at least 2 contains a Tate construction, and so vanishes in the $K(n)$-local category. This gives a product decomposition of any Mackey functor valued in $K(n)$-local spectra. In the case of calculus, this gives Kuhn’s splitting; for G-spectra, it gives a version of the tom Dieck splitting.

7 Stratified ∞-categories

Let’s say a couple of words about the proof of the main theorem. In fact, the category $\text{Mack}(\mathbf{C}^{hl})$ for an EOC \mathbf{C} is an example of an abstract structure known as a stratified stable ∞-category:

Definition 7.1. Let \mathcal{P} be a finite poset and let $\mathcal{I}_\mathcal{P}$ be the poset of intervals in \mathcal{P}, ordered by inclusion. A stratification of a stable ∞-category \mathbf{D} along a finite poset \mathcal{P} is an exact localization L_I for each interval $I \subseteq \mathcal{P}$ such that

1. for $I_1 \subseteq I_2$, I_2-local implies I_1-local, and
2. whenever I and J are intervals such that there are no $j \in J$ and $i \in I$ with $j > i$, the natural diagram

$$
\begin{align*}
L_{I \cup J} &\longrightarrow L_I \\
\downarrow &\downarrow \\
L_J &\longrightarrow L_J L_I
\end{align*}
$$

is a pullback diagram of functors.

Then there’s a general reconstruction theorem that expresses any object of \mathbf{D} as a limit of objects which belong to $L_{\{p\}} \mathbf{D}$ for elements $p \in \mathcal{P}$. So your minimal intervals.

For $\text{Mack}(\mathbf{C}^{hl})$, the poset \mathcal{P} is the underlying poset of \mathbf{C}. For an interval I which is downwards-closed, the I-local objects are those Mackey functors which are supported on the objects in I, and for general intervals, it’s something slightly more complicated that I can tell you about if you’re interested.

There are other examples of stratified categories too: for instance, the category of E_n-local spectra is stratified by localizations at wedges of Morava K-theories, and our reconstruction theorem applies there too.