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Broadly speaking, I study algebraic combinatorics, a field which has strong connections with
commutative algebra, algebraic geometry, and representation theory.

Recently I have been especially involved in the growing subfield of dynamical algebraic combina-
torics. Dynamical algebraic combinatorics investigates the dynamical properties of various natural
operators acting on objects from algebraic combinatorics. Usually these objects come from finite
posets (partially ordered sets), and the operators are algorithmically defined bijections. Dynamical
algebraic combinatorics has intriguing ties with:

• root system and Coxeter group combinatorics,
• the representation theory of Lie algebras,
• cluster algebra dynamics and integrable systems more generally,
• quiver representations and the representation theory of associative algebras.

1. Current research

Over the past couple years, I have developed the following powerful heuristic:

(*) posets with good dynamical behavior = posets with order polynomial product formulas.

The order polynomial is a certain enumerative invariant of the poset. Meanwhile, “good dynamical
behavior” means good behavior (e.g., small, predictable order and regular orbit structure) of pro-
motion of linear extensions and rowmotion of P -partitions. Posets with order polynomial product
formulas and posets with good dynamical behavior are both quite rare; in either case there are only
a handful of known families. I have used the heuristic (*) to discover the first new examples of such
families of posets in many years. Moreover, this heuristic has also pointed the way to interesting
algebra underlying the observed combinatorial phenomena. I discuss this heuristic in detail in [19].
I will now briefly explain the recent successes I’ve had applying it.

1.1. Order polynomial product formulas. For a poset P , a P -partition of height m is an
order-reversing map P → {0, 1, . . . ,m}; we denote the set of such P -partitions by PPm(P ). The
order polynomial ΩP (m) of P is the polynomial in m for which ΩP (m) = #PPm(P ). The order
polynomial was introduced by Richard Stanley in his PhD thesis [40]. It is the same as the Ehrhart
polynomial of the order polytope of P , and hence the study of order polynomials is closely related
to polytopal geometry. In particular, the leading coefficient of ΩP (m) is 1/#P ! times the number
of linear extensions (total orderings of the elements extending the partial order) of P .

The number of linear extensions is perhaps the single most important numerical invariant asso-
ciated to a finite poset. While it is known that computing this quantity is hard in general, there are
many significant families of poset with nice formulas counting their linear extensions. For example,
the famous Hook Length Formula gives a product formula for the number of linear extensions of
posets of Young diagram shape.
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Figure 1. The correspondence between plane partitions and lozenge tilings.

Posets with product formulas for their entire order polynomial are comparatively much rarer.
The first examples were provided by MacMahon in his investigation of plane partitions, which are
the special case of P -partitions for P = [a] × [b] a rectangle poset , i.e., a product of two chains.
MacMahon’s celebrated product formula [29] for the size generating function of plane partitions is

(1)
∑

π∈PPm([a]×[b])

q|π| =
a∏
i=1

b∏
j=1

(1− qi+j+m−1)

(1− qi+j−1)
,

where |π| :=
∑

p∈P π(p) is the size of a P -partition. MacMahon’s formula is nowadays recognized
as one of the most elegant in algebraic and enumerative combinatorics. By setting q := 1 it gives
a product formula for the order polynomial of the rectangle poset.

There are several alternate ways of viewing the plane partitions in PPm([a]× [b]). They have a
three-dimensional representation as a stacking of unit cubes in an a× b×m box. In turn, this 3D
picture can be thought of as a 2D picture, which shows that such plane partitions also correspond to
lozenge tilings of a hexagonal region of the triangular lattice. See Figure 1 for this correspondence.
Lozenge tilings are a special case of dimer coverings of a planar graph, and in this way plane
partitions are related to exactly solvable models in statistical mechanics. Plane partitions also have
strong ties with the representation theory of classical Lie algebras, which I’ll say more about below.
P -partitions for posets P of other Young diagram shapes and shifted shapes beyond rectangles

have also received significant attention because of their connection with the symmetry classes of
plane partitions in a box. For instance, consider transposition Tr: PPm([n]×[n])→ PPm([n]×[n]).
The set of symmetric (Tr-invariant) plane partitions in PPm([n]× [n]) is evidently in bijection with
PPm(P ) for P of shifted staircase shape. In 1898 MacMahon conjectured a product formula for
the size generating function of symmetric plane partitions, and a little more than 75 year later
Andrews [2] and Macdonald [28] independently proved MacMahon’s conjecture. Thus, posets of
shifted staircase shape have order polynomial product formulas. In the 1980s Proctor similarly
obtained product formulas for posets of staircase shape [32] and of shifted trapezoid shape [33].

Very recently, Tri Lai and I obtained the first new example of a family of posets with order
polynomial product formulas since the 80s:

Theorem 1 (Hopkins–Lai [20]). For P a poset of shifted double staircase shape (n, n−1, . . . , 1) +
(k, k − 1, . . . , 1) with 0 ≤ k ≤ n, the order polynomial of P is

ΩP (m) =
∏

1≤i≤j≤n

m+ i+ j − 1

i+ j − 1
·

∏
1≤i≤j≤k

m+ i+ j

i+ j
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Figure 2. Promotion of a standard Young tableau.

To prove Theorem 1 we applied techniques from the theory of lozenge tilings. In particular,
we used a variant of Kuo condensation, a powerful recurrence method for counting dimer config-
urations. The specific variant of Kuo condensation we used, which works for regions with a free
boundary , was recently developed by Ciucu in [6].

There are two features of Theorem 1 which are even more interesting than the result itself.
The first is that there are indications the theorem has a connection to algebra. It is well known

that the plane partitions in PPm([a]× [b]) index an irreducible representation of the general linear
Lie algebra gl(a + b), and MacMahon’s product formula counting these plane partitions can thus
be deduced from the Weyl dimension formula. Similarly, the order polynomial product formulas
for the other previously studied shapes and shifted shapes come from representations of the Lie
algebras so(2n+ 1) and sp(2n). Soichi Okada has discovered a remarkable extension of Theorem 1
involving characters of classical Lie algebras and their variants (see [20]). Thus, there is compelling
evidence that some deeper representation theory should also “explain” Theorem 1.

The second interesting feature is the method by which Theorem 1 was discovered: namely, via
the heuristic (*) connecting product formulas to poset dynamics. As I’ll explain below, the shifted
double staircase was already known to have good dynamics.

1.2. Poset dynamics: periodicity. Let me now introduce some dynamics on poset objects.
Recall that linear extensions of posets of Young diagram shape can be identified with Standard

Young Tableaux (SYTs). Promotion, denoted Pro, is an invertible operator on SYTs which can
briefly be described as follows: first we delete the square containing 1; then we “slide” the remaining
squares into the hole thus created in such a way as to preserve standardness; then we decrement the
value of all entries; and finally we fill the remaining hole with the maximum value n. This is depicted
in Figure 2. Promotion was first defined and studied, in conjunction with a related involutive
operator on tableaux called evacuation, by Schützenberger. The initial motivation was the close
connection of these two operators to the Robinson–Schensted–Knuth (RSK) correspondence. The
“sliding” procedure which goes into the definition of promotion is called jeu de taquin, and it
was used by Schützenberger to establish many fundamental results in tableaux theory. There is
a straightforward generalization, also due to Schützenberger, of promotion and evacuation to the
linear extensions of any poset [38].

For various posets, promotion is known to have algebraic models in terms of reduced words in
Coxeter groups, Kazhdan–Lusztig theory, webs, crystals, the Wronski map on the Grassmannian,
etc. These models are part of what make promotion so interesting to study.

We want to study promotion from a dynamical perspective. Periodicity is one of the most fun-
damental properties of a dynamical system. Invertible maps on finite sets are trivially periodic, so
when we investigate “periodicity” for the invertible operators in dynamical algebraic combinatorics,
often what we are really interested in is showing that they have small and predictable orders.

It turns out that the “right” power of promotion to look at for good behavior is the (#P )th
power. Schützenberger’s foundational work on jeu de taquin implies that for P = [a]×[b] a rectangle,
Pro#P is the identity. In their investigation of reduced words in the symmetric group, Edelman and
Greene [8] showed that for P a staircase, Pro#P is the transposition symmetry. Finally, Haiman [13]
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Figure 3. Diagrammatic representations of linear extensions of [2]× [n], [3]× [n], V (n).

showed that for P a shifted trapezoid or shifted double staircase, Pro#P is the identity. Moreover,
in a follow-up paper with Kim [14], Haiman showed that these four families are the only shapes
and shifted shapes for which #P is the identity or a poset automorphism. Haiman’s result about
the shifted double staircase, together with the heuristic (*), inspired me to conjecture Theorem 1.

Let me now explain how I have also successfully used (*) in the “opposite” direction, i.e., to
discover a family of posets with good dynamical behavior.

In a 2009 survey on promotion and evacuation, Stanley [41] asked whether there were any other
families of posets, beyond those classified by Haiman [13, 14] in the early 90s, for which Pro#P could

be understood. Very recently, Martin Rubey and I found such a family. Let V (n) := × [n] be

the product of the 3-element “V”-shaped poset and the n-element chain [n]. We showed:

Theorem 2 (Hopkins–Rubey [23]). For P = V (n), Pro#P is the horizontal reflection symmetry.

The linear extensions of V (n) were first studied by Kreweras [26]. He gave a remarkable product
formula for their enumeration. Later, Kreweras and Niederhausen [25] showed that in fact the
entire order polynomial of V (n) has a product formula. This result of Kreweras–Niederhausen,
combined with the heuristic (*), is how I was led to Theorem 2.

The linear extensions of V (n) correspond to certain walks in Z2 called Kreweras walks. In the
2000s, Kreweras walks became a fundamental example of “walks with small steps in the quarter
plane,” a category of lattice walks which was systematically analyzed by Bousquet-Mélou and
Mishna, and others, using the kernel method from analytic combinatorics. Hence the poset V (n),
or at least its linear extensions, have received significant attention in analytic combinatorics.

My work with Rubey suggests that V (n) is also of interest to algebraic combinatorics, because
the way we proved Theorem 2 is by encoding linear extensions of V (n) as (edge-colored) webs.
Webs are certain planar graphs that Kuperberg [27] introduced to study the invariant theory of
Lie algebras and their relatives like quantum groups. Prior work of Khovanov–Kuperberg [24],
Petersen–Pylyavskyy–Rhoades [31], and Tymoczko [43] showed that promotion of linear extensions
of [3] × [n] corresponds to rotation of sl(3)-webs. This is an extension of Dennis White’s observa-
tion [37, §8] that promotion of linear extensions of [2]× [n] corresponds to rotation of noncrossing
matchings. We similarly showed that promotion of linear extensions of V (n) corresponds to rotation
of their webs. See Figure 3 for these diagrammatic representations.

1.3. Poset dynamics: orbit structure. There is another operator on poset objects, called “row-
motion,” which also factors into the heuristic (*). Rowmotion [4, 30, 42] was originally defined as the
operator on the set J (P ) of order ideals (downwards closed subsets) of a poset P which sends I to
the order ideal generated by min(P \I). For example, the orbits of rowmotion acting on J ([2]× [2])
are depicted in Figure 4. But there is a natural identification J (P ) ' PP1(P ), and in 2013 Ein-
stein and Propp [9] defined a piecewise-linear extension of rowmotion Row: PPm(P ) → PPm(P )
for any m ∈ N. It is this piecewise-linear rowmotion of P -partitions that I’m interested in.
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Figure 4. The two rowmotion orbits of J ([2]× [2]).

For various posets P , rowmotion of P -partitions is known to have algebraic models in terms of
noncrossing partitions in Coxeter groups, maximal parabolic subgroups of minuscule type, canonical
bases from quantum groups and cluster algebras, reflection functors for quiver representations, etc.
These models are part of what make rowmotion so interesting to study.

We again want to study rowmotion of P -partitions from a dynamical perspective. It turns out
that rowmotion only ever exhibits good behavior when P is graded (all its maximal chains have the

same length r(P )), and in this case Rowr(P )+2 is the “right” power to look at for good behavior.

For several graded posets P it is known that Rowr(P )+2 is the identity or an involutive poset
automorphism [12]. But even if we know its order, we can ask for finer information about the
dynamical behavior of Row: e.g., we can try to describe its entire orbit structure.

A very compact way to describe the orbit structure of an invertible map acting on a combinatorial
set is via the cyclic sieving phenomenon (CSP) [35]. For X a combinatorial set, C = 〈c〉 ' Z/nZ
a cyclic group of order n acting on X, and f(q) ∈ N[q] a polynomial with nonnegative integer

coefficients, we say that (X,C, f(q)) exhibits CSP if #Xck = f(ζk) for all k ∈ N, where ζ := e2πi/n

is a primitive nth root of unity.
CSPs involving polynomials f(q) which have a product formula are especially valuable, because

they imply that every symmetry class of the cyclic action also has a product formula. A beautiful
such CSP was established by Rhoades [37]:

Theorem 3 (Rhoades [37]). For P = [a] × [b] a rectangle, Row: PPm(P ) → PPm(P ) has or-
der r(P ) + 2 = a + b, and (PPm(P ), 〈Row〉, f(q)) exhibits CSP, where f(q) is MacMahon’s size
generating function (1) of these plane partitions.

To prove Theorem 3, Rhoades used the dual canonical basis of gl(a+ b) representations. A new
proof, using a cluster algebra canonical basis, was recently given by Shen and Weng [39].

As part of the heuristic (*) connecting order polynomial product formulas and poset dynamics,
I have conjectured a significant extension of Theorem 3:

Conjecture 4 (Hopkins [19]). For the graded posets P for which Rowr(P )+2 : PPm(P )→ PPm(P )
is the identity or an involutive automorphism, (PPm(P ), 〈Row〉,ΩP (m; q)) exhibits CSP, where

ΩP (m; q) :=
∏
α

(1− qκ(m−α))

(1− q−κα)

is the natural q-analog of the product formula for the order polynomial ΩP (m). Here α runs through
the roots of ΩP (m), and κ is 1 if these roots are all integral and 2 if they are half-integral.

While I have been unable to resolve Conjecture 4, I was able to prove something morally very
similar. The main remaining cases of Conjecture 4 concern certain “triangular” posets. Grinberg
and Roby [12] showed that rowmotion behaves well for these “triangular” posets by embedding
them as subsets of plane partitions in PPm([n] × [n]). In this way, Conjecture 4 reduces to the
assertion that for various subgroups H of 〈Row,Tr〉 acting on PPm([n]× [n]), the numbers of plane
partitions fixed by H is given by a CSP-type evaluation. I was able to show, building on Rhoades’s
Theorem 3, that for any element g of 〈Row,Tr〉 acting on PPm([n] × [n]), the number of fixed
points of g is given by a CSP-type evaluation. Specifically, I showed:
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Theorem 5 (Hopkins [17]). We have #{π ∈ PPm([n] × [n]) : Rowk(π) = Tr(π)} = f(ζk) for all

k ∈ N, where ζ := eπi/n is a primitive (2n)th root of unity, and

f(q) =
∑

π∈PPm([n]×[n]),
Tr(π)=π

q|π| =
∏

1≤i<j≤n

(1− q2(i+j+m−1))

(1− q2(i+j−1))
·
n∏
i=1

(1− q2i+m−1)

(1− q2i−1)
,

is MacMahon’s size generating function of symmetric plane partitions [2, 28].

To prove Theorem 3, I studied the way that certain involutive automorphisms of the quantized
enveloping algebra of gl(a+ b) behave on the dual canonical basis.

1.4. Poset dynamics: homomesy. When studying a dynamical system, it is very desirable to
find invariant functions (for instance, these can be used to separate orbits). Unfortunately, for
the operators from dynamical algebraic combinatorics, it is quite hard in practice to find invariant
functions. There has been more success of late in studying a dual notion called “homomesy” [34].
For Φ an invertible operator acting on a combinatorial set X, we say the function s : X → R is
homomesic (or c-mesic) if the average of s along every Φ-orbit is equal to the same constant c ∈ R.
Homomesy is a “dual” notion to invariance because every function on X can be written uniquely
as the sum of an invariant function and a 0-mesic function.

The first example of homomesy is due to Armstrong–Stump–Thomas [3]: they showed that for
rowmotion acting on the order ideals of a root poset , the antichain cardinality statistic I 7→ #max(I)
is homomesic. Subsequently, Propp and Roby [34] showed that the antichain cardinality statistic is
also homomesic for Row acting on J ([a]× [b]). For example, we see that the average of #max(I)
along each of the orbits in Figure 4 is 1 = 1

4(0 + 1 + 2 + 1) = 1
2(1 + 1).

I recently further extended these homomesy results to the piecewise-linear level:

Theorem 6 (Hopkins [18]). For the posets P with good behavior of Row: PPm(P ) → PPm(P )
(including the rectangle poset, the “triangular” posets, etc.), the piecewise-linear analog of the
antichain cardinality statistic is homomesic for this action.

In fact, I showed that Theorem 6 holds at the birational level (see Einstein–Propp [9] for birational
poset dynamics). Theorem 6 fits into the philosophy of the heuristic (*) because it shows there is
a universal homomesy exhibited by all these posets.

In the past, homomesy results have typically been proven by using exact formulas or alternative
models for the action. I proved Theorem 6 in a different way: by showing that it follows from a
certain structural property of the posets. Specifically, Theorem 6 is the culmination of work I did
in a series of papers [5, 15, 16, 18] (the first in collaboration with others) relating the coincidental
down-degree expectations (CDE) property of posets [36] to rowmotion and homomesy.

2. Past research

For my PhD thesis, I (in collaboration with others) investigated labeled chip-firing and root
system chip-firing [21, 11, 10, 22]. The technical details of this chip-firing work are rather different
from my current research. But the two projects are broadly similar in spirit in that they both
involved studying a discrete dynamical system using some combinatorics arising from algebra.

3. Future research

My investigation of dynamical algebraic combinatorics, and specifically the heuristic (*), is very
much an ongoing project. The main problems I would like to focus on in the near future are:
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(1) Resolve more of the dynamical conjectures arising from the heuristic (*). These
conjectures include Conjecture 4 and related CSP conjectures for promotion, as well as
showing that V (n) has good behavior of rowmotion of its P -partitions, showing that certain
pairs of doppelgänger posets have the same behavior of P -partition rowmotion, and more.

(2) Investigate possible algebraic explanations for the remarkable combinatorial
behavior of these posets. Some algebraic questions stemming from my research include:
what is the representation-theoretic meaning of Okada’s character conjecture extending
Theorem 1?; what is the invariant-theoretic meaning of the linear extensions of V (n) and
their webs?; can we use the dual canonical bases or cluster algebra bases in other types to
address more cases of Conjecture 4?

(3) Find more examples of posets satisfying either side of the heuristic (*). It seems
entirely possible that there are other posets with order polynomial product formulas which
have also been “overlooked.” Perhaps an exhaustive computer search could even turn up
some interesting examples.

(4) Find formal implications between the properties in the heuristic (*). There are
many spiritual connections between the various objects which enter into the heuristic: for
instance, the order polynomial ΩP (m) is the Ehrhart polynomial of the order polytope of P ,
and rowmotion is a piecewise-linear action on this polytope; the linear extensions of P are
somehow the m→∞ “limit” of the P -partitions PPm(P ); promotion and rowmotion can
be defined in very similar ways as compositions of involutions; etc. However, I know of no
direct, formal implications between any of the properties in this heuristic. It would be very
interesting to establish such implications.

Many parts of these problems would be suitable for student research as well. Indeed, I mentored
a group of students in a 2019 Research Experience for Undergraduates (REU) at the University
of Minnesota, and the problem I gave them dealt with P -partition rowmotion. They were able
to resolve a conjecture of mine (specifically, the m = 1 case of the aforementioned doppelgänger
conjecture) and consequently they wrote a paper [7] which they have submitted for publication.
Moreover, previous participants of the Minnesota REU have engaged in related investigations of
the cyclic sieving phenomenon (see, e.g., [1]).
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