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Derivation of Black-Scholes-Merton Differential Equation

We are now in position to derive the Black-Scholes or Black-Scholes-Merton differential equation.

We build the model via a riskless portfolio, as we did for binomial trees. As for binomial trees, we

carry some stock along with shorting the option. The amount of stock changes instantaneously.

Special assumptions are required:

1. The stock price follows the process defined earlier for µ and σ:

dS

S
= µdt + σdz

2. Short selling of securities with full use of proceeds is permitted

3. There are no transactions costs or taxes. All securities are perfectly divisible

4. There are no dividends during the life of the derivative

5. There are no riskless arbitrage opportunities

6. Security trading is continuous

7. The risk-free rate of interest, r, is constant and the same for all maturities
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Derivation of Black-Scholes-Merton Differential Equation

Recall our process for a continuous stock movement modeled on an Itô process with expected gain

µ and volatility σ.

dS = µSdt + σSdz

Let f be the price of a call option that depends on S. The variable f depends, then S and t. Then

df =

 
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ

2
S

2

!
dt +

∂f

∂S
σSdz
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Derivation of Black-Scholes-Merton Differential Equation

We now build a portfolio that will eliminate the stochasticity of the process. The appropriate

portfolio (as we will see) is

• -1 option

• ∂f
∂S shares (∆ =

fu−fd
S0u−S0d is the Delta hedge found in binomial trees)

which changes continuously over time. Let Π be the value of the portfolio then

Π = −f +
∂f

∂S

and ∆Π be the value of the portfolio in the time interval ∆t then

∆Π = −∆f +
∂f

∂S
∆S
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Derivation of Black-Scholes-Merton Differential Equation

Then portfolio has no stochastic part! Simple arbitrage argument and risk-neutral growth implies

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ

2
S

2∂2f

∂S2
= rf (1)

Equation (1) is the Black-Scholes partial differential equation. Any solution corresponds to the

price of a derivative overlying a particular stock.

In order to specify further what the derivative is, we use a boundary condition to constrain it.
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Boundary conditions for European call options:

f = max{S −K, 0}

when t = T . Boundary conditions for European put options:

f = max{K − S, 0}

when t = T . The portfolio created is riskless only for infinitesimally short periods.
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Black-Scholes Pricing Formulas

The Black-Scholes formulas for the price at time 0 of a European call option on a

non-dividend-paying stock and for a European put option on a non-dividend paying stock are

c = S0N(d1)−Ke
−rT

N(d2)

and

p = KN(−d2)− S0e
−rT

N(−d1)

where

d1 =
ln

S0
K +

“
r + σ2

2

”
T

σ
√

T

d2 =
ln

S0
K +

“
r − σ2

2

”
T

σ
√

T
= d1 − σ

√
T

and N(x) is the cumulative probability distribution function.

Options, Futures, Derivatives / March 10, 2008 7



Black-Scholes Pricing Formulas

The variables c and p are the European call and put prices, S0 is the current stock price at time 0,

K is the strike price, r is the continuously compounded risk-free rate, σ is the stock price

volatility, and T is the time to maturity of the option. Why?
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Black-Scholes Formula for Option on stock with dividend yield

The price c of a European call and price p of a European put on a stock providing a dividend yield

at rate q as

c = S0e
−qT

N(d1)−Ke
−rT

N(d2)

and

p = Ke
−rT

N(−d2)− S0e
−qT

N(−d1).

Since ln
S0e−qT

K = ln
S0
K − qT then d1 and d2 are

d1 =
ln

S0
K +

“
r − q + σ2

2

”
T

σ
√

T

d2 =
ln

S0
K +

“
r − q − σ2

2

”
T

σ
√

T
= d1 − σ

√
T

and N(x) is the cumulative probability distribution function.
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The associated Black-Scholes equation can be derived and is

∂f

∂t
+ (r − q) S

∂f

∂S
+

1

2
σ

2
S

2∂2f

∂S2
= rf

This can be solved in a similar fashion as we solved the Black-Scholes equation last time...
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Currency Options

Let S0 denote the spot exchange rate. S0 is the value of one unit of the foreign currency in US

dollars.

Black-Scholes formulas with dividend yield

c = S0e
−rfT

N(d1)−Ke
−rT

N(d2)

and

p = Ke
−rT

N(−d2)− S0e
−rfT

N(−d1).

with d1 and d2 as

d1 =
ln

S0
K +

“
r − rf + σ2

2

”
T

σ
√

T

d2 =
ln

S0
K +

“
r − rf − σ2

2

”
T

σ
√

T
= d1 − σ

√
T
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Note that F0 = S0e
(r−rf )T then we can rewrite the equations as:

c = e
−rT

[F0N(d1)−KN(d2)]

and

p = e
−rT

[KN(−d2)− S0N(−d1)] .

with d1 and d2 as

d1 =
ln

F0
K + σ2

2 T

σ
√

T

d2 =
ln

F0
K +−σ2

2 T

σ
√

T
= d1 − σ

√
T
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Naked & Covered Positions

• In a naked position the investor does nothing to hedge against losses.

In our example, this approach does well so long as the stock remains below $50. Then

• Alternatively the investor house can take a covered position. This involves buying 100,000

shares as soon as the option has been sold. If the option is exercised, the strategy works well.

If the stock drops then there is a large loss. By the put-call parity this is similar to

c + Ke
−rT

= p + S0 =⇒ −c + S0 = −p + Ke
−rT

so it is the same as writing a put option. Therefore, the covered position is bad if the stock

price goes down.
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Stop-Loss Strategy

The stop-loss strategy involves the following:

• Consider a bank that has written a call option with strike price K.

• The bank buys one unit of stock as soon as the price rises above K and selling it as soon as its

price is less than K.

• Point is to hold a naked position whenever the stock is less than K and a covered position

whenever the stock price is greater than K.

• The scheme is designed to ensure that at time T the institution owns the stock if the option

closes in the money and does not own it if the option closes out of the money.

• Strategy seems to produce payoffs that are the same as the payoffs on the option.
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Two problems:

• Cash flows to the hedger occur at different times and must be discounted

• Purchases and sales cannot be made at exactly the same price K. Crucial point...If the stock

purchases are made at K + ε and sold at K − ε then every purchase and sale incurs a loss of

2ε.

If the stock prices change continuously (as it is modeled on a Brownian motion) then we expect

the curve S to cross our line S = K an infinite number of times! Our profit will go away due

to excessive number of transactions.

Options, Futures, Derivatives / March 10, 2008 15



Delta Hedging

Instead of designing a portfolio with a stop-loss strategy, a different strategy is to design a delta
hedge.

• Recall that ∆ of an option is the rate of change of the option price with respect to the price of

the underlying asset.

• We have that ∆ = ∂c
∂S where c is the price of the call option and S is the stock price.
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Delta Hedging, cont.

Since delta changes over time, the investor’s position remains delta hedged (delta neutral) for

relatively short periods of time.

A hedge is rebalanced, or adjusted periodically, to remain delta neutral.

We will describe a dynamic-hedging scheme that rebalances the portfolio periodically to ensure a

delta-neutral portfolio.

This is in contrast to static hedging schemes where the hedge is set up and left alone. Such

schemes are called hedge and forget schemes.

We will use Black-Scholes analysis to help devise a good delta hedge scheme. Recall that the

Black-Scholes portfolio that is riskless is

−1 : option

+∆ : shares of stock
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Delta of European Stock Options

A European call option on a non-dividend-paying stock is

∆(call) = N(d1)

and a European put option on a non-dividend-paying stock is

∆(put) = N(d1)− 1

Keeping a delta hedge for a long position in a European call option involves maintaining a short

position of N(d1) shares at any given time.

Note that the ∆ for a European put option is negative,so that the a long position in a put option

should be hedged with a long position in the underlying stock, and a short position in a put option

should be hedged with a short position in the underlying stock.
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Delta of Other European Options

For European call options on an asset paying a yield q,

∆(call) = e
−qT

N(d1)

where d1 is defined by

d1 =
ln

S0
K + (r − q + σ2

2 )T

σ
√

T
and for European puts

∆(put) = e
−qT

[N(d1)− 1]

for the same d1.

If the asset is a currency, we replace q with rf , the foreign risk-free interest rate. If the asset is a

futures contract, they are correct with q equal to the risk-free interest rate r and S0 = F0 in the

definition of d1.

Options, Futures, Derivatives / March 10, 2008 19



Dynamic Delta Hedging

Consider the operation of a delta hedging for our first example.

S0 = 49 K = 50 r = 0.05 σ = 0.20 T = 0.3846 µ = 0.13

on 100,000 shares of stocks. The European call option has been written for $300,000. The initial

∆ is calculated:

d1 =
ln

S0
K +

“
r + σ2

2

”
T

σ
√

T

=
ln 49

50 +
“
0.05 + 0.022

2

”
0.3846

0.2
√

0.3846

and

N(d1) = 0.522
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• Once option has been written, the investor has to buy

100, 000× 0.522 = 52, 200 shares

for a cost of 52, 200× 49 = 2, 557, 800. The interest rate is 5%, so after one week the

interest costs

2, 557, 800e
0.05× 1

52 = 2, 500

• Suppose now that the stock drops to $48.12. The delta declines to 0.458. The hedge needs to

be

100, 000× 0.458 = 45, 800 shares

Therefore, the bank needs to sell 6400 shares. The strategy realizes $308,000 in cash, and the

borrowings become 2, 557, 800 + 2, 500− 308, 000 = 2, 252, 300. The interest over this

period is

2, 252, 300× e
0.05× 1

52 = 2, 200

• And on...
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In this simulation, the stock price climbs.

As it becomes evident that the option will be exercised at the maturity date, and delta approaches

1.0.

By week 20, the hedger has a fully covered position. The hedger receives $5 million for the stock

held, so that the total cost of writing the option and hedging it is $263,300.

On the other hand consider a sequence of events such that the option closes out of the money. As

it becomes clear that the option will not be exercised, delta approaches zero.
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Delta of a Portfolio

The delta of a portfolio of options or other derivatives dependent on a single asset whose price is S

is
∂Π

∂S
where Π is the value of the portfolio.

• The delta of the portfolio can be calculated from the deltas of the individual options in the

portfolio. If a portfolio consists of a quantity wi of option, the delta of the portfolio is given by

∆ =

nX
i=1

wi∆i

where ∆i is the delta of the ith option.

• The formula can be used to calculate the position in the underlying asset necessary to make the

delta of hte portfolio zero. When this position has been taken, the portfolio is referred to as

being delta neutral
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Gamma

The gamma, Γ of a portfolio of options on an underlying asset is the rate of change of the

portfolio’s delta with respect to the price of the underlying asset.

It is the second partial derivative of the portfolio with respect to asset price:

Γ =
∂2Π

∂S2

If gamma is small, delta changes slowly, and adjustments to keep a portfolio delta neutral need to

be made only relatively infrequently.

For European call options on non-dividend-paying stocks, we have

Γ =
N ′(d1)

Sσ
√

T − t
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Making a Portfolio Gamma Neutral

• Suppose that a delta-neutral portfolio has a gamma equal to Γ, and a traded option has a

gamma equal to ΓT .

• If the number of traded options added to the portfolio is wT , the gamma of the portfolio is

wTΓT + Γ

• Including the traded option is likely to change the delta of the portfolio, so the position in the

underlying asset cannot be changed continuously when delta hedging is used.

• Delta neutrality provides protection against larger movements in this stock price between hedge

rebalancing
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Vega

We set vega of a portfolio of derivatives, V , is the rate of change of the value of the portfolio with

respect to the volatility of the underlying asset:

V =
∂Π

∂σ

• If vega is high in absolute terms, then the portfolio’s value is very sensitive to small changes in

volatility.

• If vega is low in absolute terms, then volatility changes have little impact on the value of the

portfolio.

Note that a position in the underlying asset has zero vega, but the vega of a portfolio can be

changed by adding a position in a traded option.

• If V is the vega of the portfolio and VT is the vega of a traded option, a position of − V
VT

in

the traded option makes the portfolio instantaneously vega neutral.

• However, a portfolio that is gamma neutral will not generally be vega neutral and vice-versa.

• If a hedger requires a portfolio to be both gamma and vega neutral, at least two traded

derivatives dependent on the underlying asset must usually be used.
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Calculating vega

For a European call or put on a non-dividend-paying stock, vega is given by

V = S0

√
TN

′
(d1)

where d1 =
ln S

K
+(r+σ2

2 )T

σ
√

T
.

For a European call or put on a dividend-paying stock with yield q, the vega is

V = S0

√
TN

′
(d1)e

−qT

where d1 =
ln S

K
+(r−q+σ2

2 )T

σ
√

T
.

When the asset is a stock index, q is the dividend yield. When it is a currency contract, then set q

to be the risk-free foreign rate rf . When it is a futures contract, S0 = F0 and q = r.
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Synthetic Puts

In general a portfolio manager wishes to acquire a put option to protect against large declines

while achieving gains if the market appreciates.

One approach is to buy put options on a market index. Another approach is to create the put

synthetically.

To create a synthetic put option, one maintains a position in the underlying asset so that the delta

of the position is equal to the delta of the required option.

This can be more attractive than buying the put from the market:

• Options markets do not always have the liquidity to absorb trades that managers of large funds

would like to have access to.

• Fund managers often require strike prices and exercise dates that are different from those

available from the exchange-traded markets.
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How to synthetically create the put?

The option can be created by trading the portfolio or by trading in index futures contracts.

• To create the put option synthetically, a fund manager should ensure that at any give time a

proportion

e
−qT

[N(d1)− 1]

of the stocks in the original portfolio has been sold and the proceeds invested in riskless assets.

As the value of the original portfolio declines, the delta of the put becomes more negative and

the proportion of the original portfolio sold must be increased.

As the value of the original portfolio increases, the delta of the put becomes less negative and

the proportion of the original portfolio sold must be decreased (and shares purchased)

• This strategy to create portfolio insurance entails dividing funds between the stock portfolio on

which the insurance is required and riskless assets.

• As the value of the stock portfolio increases, riskless assets are sold and the position in the

stock portfolio is increased.

• As the value of the stock portfolio decreases, the position in the stock portfolio is decreased

and riskless assets are purchased.

• Insurance costs arise as the fact that selling occurs after a decline in the market and buying

occurs after a rise in the market.
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Volatility Smiles

How close are market prices to those predicted by Black-Scholes? Are Black-Scholes formulas used

to price options?

Not entirely. Traders typically allow for volatility to depend on price strike price and time to
maturity.

Plot of implied volatility of an option as a function of strike price is known as a volatility smile
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Implied Volatility

There are two ways to think about volatility:

• From price changes, we can compute the volatility via standard deviation.

• Another method is to consider data used in Black-Scholes:

c = S0N(d1)−Ke
−rT

N(d2)

with

d1 =
ln

S0
K +

“
r + σ2

2

”
T

σ
√

T

d2 =
ln

S0
K +

“
r − σ2

2

”
T

σ
√

T
= d1 − σ

√
T

If we know S0, K, r, and c, then we can solve, implicitly, for σ.

The resulting σ is called the implied volatility.
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Foreign Currency Options

We now consider our first volatility smile. This is a graph of volatility as a function of strike price.

We assumed for Black-Scholes that this is a constant function...

On the other hand traders use the following volatility smile

• Volatility is relatively low for at-the-money options.

• Volatility is relatively high for the more in-the-money or out-of-the-money the strike price is.
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Volatility Smile for Foreign Currency Options

The associated probability distribution should no longer be lognormal, since the crucial ingredient

to S being lognormal was
dS

S
= µdt + σεdz

Now σ is a function....

The implied distribution turns out to be
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The distribution with the same mean and same standard deviation has

• fat tails

• steeper
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Volatility Smiles for Equity Options

Before the crash of 1987, stocks were generally assumed to follow the lognormal distribution.

After the crash, a volatility smile for equity options was introduced by Rubinstein and

Jackwerth-Rubinstein.

The volatility smile or volatility skew, has the form of a downward sloping parabola.
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• Volatility to price a low-strike-price option (deep-out-of-the-money put or deep-in-the-money

call) is significantly higher than that used to price a high-strike-price option

(deep-in-the-money put or deep-out-of-the-money call).

• The volatility smile for equity options corresponds to the implied probability distribution given

by below:

compared to the corresponding lognormal distribution.
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Volatility Surfaces

Traders also consider the volatility term structure when pricing options.

In other words the volatility used to price an at-the-money option depends on the maturity of the

option.

• Volatility tends to be an increasing function of maturity when short-dated volatilities are

historically low, since there is expectation that volatility will increase.

• Volatility tends to be a decreasing function of maturity when short-dated volatilities are

historically high, since there is expectation that volatility will decrease.
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Basic Numerical Procedures: Semester II

• Generalized Binomial Trees

• Monte Carlo Methods for Black-Scholes

• Finite Difference Methods
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Binomial Trees

Black-Scholes theory provides exact formulas for the pricing of European options under ideal

situations.

American options do not have such a nice representation. Binomial trees are very useful for such

derivatives:

Recall the Binomial Tree setup:

• Assume that in a short period of time ∆t the stock either rises to Su or drops to Sd.

• Thus u > 1 and d < 1. The probability of the up movement is p and the probability of a

down movement is 1− p.

• Assume that the world is risk neutral:

– Assume that the expected return from all traded assets is the risk-free interest rate

– Value payoffs from the derivative by calculating their expected values and discounting at the

risk-free interest rate.
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• The values p, u, d must give correct values for the mean and variance of asset price changes

during the time interval ∆t.

• Since we assume the risk-neutral world hypothesis holds, the expected return from the asset is

the risk-free interest rate, r.

• Suppose that the asset provides a yield of q, then the expected return of the capital gains must

be r − q. Therefore, the expected value of the asset price at the end of the time interval of

length ∆t becomes

Se
(r−q)∆t

where S is the value of the stock at the start of the time period.

Therefore, we find the expected value of capital gains increase is

Se
(r−q)∆t

= pSu + (1− p)Sd

or

e
(r−q)∆t

= pu + (1− p)d (2)

independent of the stock price. Here we used the Mean Growth to determine a relationship

between p, u, d.
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• We now use the volatility. The variance of a variable var Q = E(Q2)− E(Q)2.

• The variance over a time interval ∆t then σ2∆t. We compute

σ
2
∆t = pu

2
+ (1− p)d

2 − e
2(r−q)∆t

From (2) we find p = a−d
u−d where a = e(r−q)∆t, we see

σ
2
∆t = e

(r−q)∆t
(u + d)− ud− e

2(r−q)∆t
(3)

We get two conditions on u, d, p from (2) and (3)

• Finally we impose a simplifying condition d = 1
u. Ignoring higher-order terms in ∆t we get

p =
a− d

u− d
(4)

u = e
σ
√

∆t
(5)

d = e
−σ

√
∆t

(6)

a = e
(r−q)∆t

(7)

a is the growth factor.
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• For a one step tree we evaluate

f = e
−r∆t

[pfu + (1− p)fd]

where e−r∆t is the discounting factor on the time-step.

• Recursively, we check at at the end time fN,j = max{K − S0u
jdN−j, 0}. We then evaluate

the worth recursively.

• More after an example:
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Expressing Binomial Trees Algebraically

• Recursively, we check at at the end time fN,j = max{K − S0u
jdN−j, 0}. We then evaluate

the worth recursively.

• At some node (i, j) there is a probability p of moving from (i, j) at time i∆t to

(i + 1, j + 1) at time (i + 1)∆t, and a probability (1− p) of moving from (i + 1, j − 1)

at time (i + 1)∆t.

• If no early exercise then the risk-neutral value is

fi,j = e
−r∆t

[pfi+1,j+1 + (1− p)fi+1,j−1]

for 0 ≤ 1 ≤ N − 1 and 0 ≤ j ≤ i.

• If early exercise is taken into account then we get

fi,j = max{K − S0u
j
d

i−j
, e
−r∆t

[pfi+1,j+1 + (1− p)fi+1,j−1]}

In the limit as ∆t → 0, we get the true price for an American put option.
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Estimating the Greek letters

We now compute the Delta from the Binomial Tree:

Recall that

∆ =
∂f

∂S
≈

∆f

∆S

Consider a two node tree, then the change in price at the next time step is ∆S = S0u− S0d.

The change in the price of the option is f1,1 − f1,0.

Thus

∆ =
f1,1 − f1,0

S0u− S0d
(8)

At a later node, we compute the discrete ∆ hedge parameter

∆j,k =
fj+1,k+1 − fj+1,k

S0u− S0d
(9)
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The next Greek letter we can compute is Γ. Since Γ is a second derivative, we use the following

finite difference scheme:

Γ =
∂2c

∂S2
≈

∆j+1,k+1 −∆j+1,k

h
where h is the difference in stock price at the second level.

Expanding out yields:

Γ =

h
f2,2−f2,1

S0u2−S0

i
−
h

f2,1−f2,0

S0−S0d2

i
h

(10)

with

h =
S0u

2 − S0d
2

2
. (11)

The next Greek letter we can compute is Θ. Since Θ = ∂f
∂t is a first derivative, it is not to difficult

to compute:

Θ =
∂f

∂t
≈

f2,1 − f0,0

2∆t
(12)

since the stock price is the same at nodes 0, 0 and 2, 1.

To compute Vega V , we need to compute ∂f
∂σ . First compute the option price f with using a

binomial tree with volatility σ and then compute the option price f∗ using a binomial tree with

volatility σ + ∆σ. Then compute

V =
f∗ − f

∆σ
(13)
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Binomial trees for dividend-paying stock

• We consider the case of a known dollar dividend. This is harder than a known dividend yield.

• Assuming that the volatility is constant over the life of the option, the nodes will not recombine

at later times:

• Suppose that there is one dividend at some date τ which is between k∆t and (k + 1)∆t with

a dollar amount D.

• When i ≤ k the nodes at time i∆t correspond to stock prices

S0u
j
d

i−j
j = 0, . . . , i

When i = k + 1, the nodes on the tree correspond to stock prices

S0u
j
d

i−j −D, j = 0, . . . , i

When i = k + 2, the nodes on the tree correspond to stock prices“
S0u

j
d

i−j −D
”

u and
“

S0u
j
d

i−j −D
”

d

• We note that Du 6= Dd, so the nodes do not recombine in the middle. Therefore, there are

2i nodes instead of i + 1.

• When i = k + m, there are m(k + 2) nodes instead of k + m + 2.
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We can simplify the analysis by separating the uncertain, stochastic part from the certain dividend

part.

• Suppose that there is one dividend date τ during the life of the option. and

k∆t ≤ τ ≤ (k + 1)∆t

• The value of the uncertain component S∗ at time i∆t is

– S∗ = S −De−r(τ−i∆t) when i∆t < τ

– S∗ = S when i∆t > τ

where D is the dividend. Define σ∗ to be the volatility of S∗ which is assumed to be constant.

• We compute p, u, d using σ∗ and S∗. We add the present value of any future dividends (if

any) to determine S from S∗.

• Suppose S∗0 is the value of S∗ at time zero. At time i∆t, the nodes on the tree correspond to

S
∗
0u

j
d

i−j
+ De

−r(τ−i∆t)
, j = 0, . . . , i

when i∆t < τ and

S
∗
0u

j
d

i−j

• The tree at time i∆t has i + 1 nodes.
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Monte Carlo and Derivatives

We can use Monte Carlo to offer a risk-neutral valution by computing sample paths. Consider a

derivative dependent on a single market variable S that provides a payoff at time T .

1. Sample a random path for S in a risk-neutral world.

2. Calculate the payoff from the derivative

3. Repeat steps 1 and 2 to get many sample values of the payoff from the derivative in a

risk-neutral world.

4. Calculate the mean of the sample payoffs to get an estimate of the expected payoff in a

risk-neutral world.

5. Discount the expected payoff at the risk-free rate to get an estimate of the value of the

derivative
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Checking Black-Scholes

One can numerically check the veracity of the Black-Scholes formula. How?

We are given constants S0, K, r, σ, T that we can use in the Black-Scholes formula.

• Compute the stock process via a Monte Carlo method:

S(T ) = S(0) exp

" 
µ−

σ2

2

!
T + σε

√
T

#

by choosing a sample from the standard normal distribution.

• Given S(T ) we evaluate the option value as

e
−rT

max{S(T )−K, 0}

• We repeat the procedure a number of trials and average the value.
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Number of Trials

• Accuracy of the result given by Monte Carlo simulation depends on the number of trails.

• Usually one calculates the standard deviation and the mean of the discounted payoffs given by

the simulation trials.

• Denote µ and ω to be the mean and standard deviation, and we assume µ is the price of the

derivative at the end of the simulated trial.

• The standard error of the estimate of the price of the derivative is given by

ω
√

M

where M is the number of trials.

• A 95% confidence interval for the price f of a derivative is given by

µ− 1.96
ω
√

M
< f < µ + 1.96

ω
√

M
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Greek letters

In order to compute the Greek letters from a Monte Carlo simulation, one needs to compute the

partial derivative of f with respect to a derivative. We consider the approximate derivative of f

with respect to x.

• First compute the Monte Carlo simulation in the usual way to calculate f̂ with a fixed value of

x.

• Second compute the value of the derivative f̂∗ with a new x + ∆x.

• Third compute
f̂∗ − f̂

∆x
• In order to minimize the standard error of the estimate, the number of intervals N , the number

of random streams, and the number of trials M should be the same for calculating both f̂ and

f̂∗.
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Sampling through a Tree

Instead of implementing Monte Carlo simulation by randomly sampling from the stochastic process

for the underlying variable, we can use an N -step binomial tree and sample from the 2N paths

that are possible.

• Suppose we have a binomial tree here the probability of an up-movement is 0.6. The procedure

for sampling a random path through the tree is as follows.

• At each node, we sample a random number between 0 and 1. If the number is less than 0.4, we

take the down path.

• Once we have a complete path from the initial node to the end of the tree, we can calculate a

payoff.

• This completes a first trial. Similar procedure is used to complete more trials. The mean of the

payoffs is discounted at the risk-free rate to get an estimate of the value of the derivative.
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Finite Difference Schemes

Finite difference methods are useful for solving partial differential equations. The differential

equation is converted into a set of difference equations that are solved iteratively.

Consider how we might value an American put option on a stock paying a dividend yield of q. The

differential equation that the option must satisfy is the associated Black-Scholes equation

∂f

∂t
+ (r − q) S

∂f

∂S
+

1

2
σ

2∂2f

∂S2
= rf

• Suppose the life of the option is T . Divide this into N equally spaced intervals of length

∆t = T
N . A total of N + 1 times are therefore considered

0, ∆t, 2∆t, . . . , T

• Suppose that Smax is a stock price sufficiently high that (if reached) the put has virtually no

value. Define ∆S = Smax
M and consider a total of M + 1 equally spaced stock price:

0, ∆S, 2∆S, . . . , Smax

Choose Smax so that a k∆S is the current stock price.
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• The time points and stock price points define a grid consisting of (N + 1)× (M + 1) points.

The point (i, j) on the grid is the point that corresponds to time i∆t and stock price j∆S.

• Use the discrete variable fi,j to denote the value of the option on the grid point (i, j).

We can write down the finite difference scheme for the Black-Scholes, using S = j∆S, to get

fi+1,j =

„
1

2
(r − q)j∆t−

1

2
σ

2
j
2
∆t

«
fi,j−1

+
“
1 + σ

2
j
2
∆t + r∆t

”
fi,j

+

„
−

1

2
(r − q)j∆t−

1

2
σ

2
j
2
∆t

«
fi,j+1

= ajfi,j−1 + bjfi,j + cjfi,j+1
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We now choose boundary conditions for our problem.

Next the value of the put at time T is max{K − ST , 0}, where ST is the stock price at time T .

fN,j = max{K − j∆S, 0} j = 0, . . . , M

The value of the put option when the stock price is zero is K. Hence

fi,0 = K i = 0, . . . , N

The value of the put option when the stock price is Smax is zero. Hence

fi,M = 0 i = 0, . . . , N
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Finite Difference Cont.

We now solve for the rest of the fi,j’s. We know fN,j then our equation yields equations

ajfN−1,j−1 + bjfN−1,j + cjfN−1,j+1 = fN,j

for j = 1, . . . , M − 1. The right hand sides are known from the boundary condition:

fN−1,0 = K fN−1,M = 0

• Therefore, we have M − 1 linear equations for M − 1 unknowns. This can be solved easily to

get

fN−1,1, fN−1,2, . . . , fN−1,M−1

• We now check whether fN−1,j is optimal. If fN−1,j < K − j∆S then we should exercise

early and fN−1,j is reassigned the value K − j∆S.

• Once T −∆t has been evaluated at points (N − 1, j), we move to the points on the grid

referring to T − 2∆t.

• Finally, we get the grid points f0,1, f0,2, . . . , f0,M−1. We choose the point that is
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Explicit Finite Difference Method

The implicit finite difference scheme is very robust, and as ∆t and ∆S → 0 then the solution

goes to the solution of the Black-Scholes.

On the other hand implicit finite difference requires the solution of a set of equations at each fixed

time.

We can do a simpler method that doesn’t require solving the system of equations at each time step.

• Assume that ∂f
∂S and ∂2f

∂S2 is the same at (i, j) as at (i + 1, j). Then

∂f

∂S
≈

fi+1,j+1 − fi+1,j−1

2∆S

and
∂2f

∂S2
≈

fi+1,j+1 − 2fi+1,j + fi+1,j−1

(∆S)2
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This yields a finite difference scheme

fi,j =
1

1 + r∆t

„
−

1

2
(r − q)j∆t +

1

2
σ

2
j
2
∆t

«
fi+1,j−1

+
1

1 + r∆t

“
1− σ

2
j
2
∆t
”

fi,j

+
1

1 + r∆t

„
1

2
(r − q)j∆t +

1

2
σ

2
j
2
∆t

«
fi+1,j+1

= a
∗
jfi+1,j−1 + b

∗
jfi+1,j + c

∗
jfi+1,j+1

Since we know the information at the previous time, we can directly compute the value of fi,j

without solving a system of equations.
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Change of Variables Improvement

We can improve the efficiency of the finite difference methods by using ln S rather than S as the

underlying variable. Setting Z = ln S then Black-Scholes becomes

∂f

∂t
+

 
r − q −

σ2

2

!
∂f

∂Z
+

1

2
σ

2 ∂2f

∂Z2
= rf

We discretize in equal Z steps, rather than for S steps. The difference equation for the implicit

method becomes

fi+1,j − fi,j

∆t
+

 
r − q −

σ2

2

!
fi,j+1 − fi,j−1

2∆Z
+

1

2
σ

2fi,j+1 − 2fi,j + fi,j−1

(∆Z)
2

= rfi,j

So:
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We get the finite difference scheme

αjfi,j−1 + βjfi,j + γjfi,j+1 = fi+1,j

where

αj =
∆t

2∆Z

 
r − q −

σ2

2

!
−

∆t

2 (∆Z)
2
σ

2

βj = 1 +
∆t

(∆Z)
2
σ

2
+ r∆t

γj = −
∆t

2∆Z

 
r − q −

σ2

2

!
−

∆t

2 (∆Z)
2
σ

2
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The explicit finite difference scheme

α
∗
jfi+1,j−1 + β

∗
j fi+1,j + γ

∗
j fi+1,j+1 = fi,j

where

α
∗
j =

1

1 + r∆t

"
−

∆t

2∆Z

 
r − q −

σ2

2

!
+

∆t

2 (∆Z)
2
σ

2

#

β
∗
j =

1

1 + r∆t

"
1−

∆t

(∆Z)
2
σ

2

#

γ
∗
j =

1

1 + r∆t

"
∆t

2∆Z

 
r − q −

σ2

2

!
+

∆t

2 (∆Z)
2
σ

2

#

The change of variables approach has the property that αj, βj, γj as well as α∗j , β∗j , γ∗j .

Most efficient if

∆Z = σ
√

3∆t
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Value at Risk

We now look for a quantity that gives a measure of the total risk of a portfolio

Value at Risk (VaR) - attempts to provide a single number that summarizes the total risk in a

portfolio of financial assets.

This is widely used by corporate treasurers and fund managers as well as by financial institutions.

Central bank regulators use VaR in determining the capital the bank is required to keep to reflect

the market risks it is bearing.

• The value-at-risk measure, we are interested is of the form

We are X percent certain that we will not lose more than V dollars in the next N days.

• The variable V is the VaR of the portfolio

• The VaR is a function of two parameters - the time horizon N and the confidence level X. It

measure the loss level over N days that we are X certain will not be exceeded.

• Bank regulators require that banks calculate VaR with N = 10 and X = 99.
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VaR

• VaR is attractive since it simply asks

How bad can things get?

• When the value of the portfolio is normally distributed we see VaR looks like:

• There is a problem if the portfolio is not normally distributed. Consider a case where there is a

larger probability of a very large down movement and less otherwise:
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• The two graphs have the same VaR, but the second is riskier, since there is a larger probability

of a very large loss.

Some traders may look for a different measure of total risk, Conditional VaR.

• C-VaR asks

If things do get bad, how much can we expect to lose?

• C-VaR is the expected loss during an N -day period conditional that we are in the 100−X%

left tail of the distribution.

• VaR is a most popular measure than other such risk measures.
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The Time Horizon

VaR has two parameters - the N -day time horizon, and the X confidence interval.

• In practice N = 1, since there is usually not enough data for a longer period.

• Usually one assumes

N − day VaR = 1− day VaR×
√

N

• Since bank’s are required to have capital at least three times the 10-day 99% VaR, then it is

required to have

3×
√

10 = 9.49

times the 1-day 99% VaR.
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Historical Simulations

Historical simulation is one approach of estimating VaR.

• Use past data in a direct way as a guide to what might happen in the future.

• Suppose that we wish to calculate the 99% confidence level with a 1-day horizon using 500

days of data.

1. Identify the market variables affection the portfolio (typically exchange rates, equity
prices, interest rates, etc).

2. Collect data on the movements in these markets variables over the most recent 500 days.

3. We have 500 alternative scenarios for what can happen between today and tomorrow

4. Scenario 1 is where the percentage changes in the values of all variables are the same as

they were on the first day for which we have collected data.

5. Scenario 2 is where the percentage changes in the values of all variables are the same as

they were on the second day for which we have collected data.

6. Etc...

7. For each scenario we calculate the dollar change in the value of the portfolio between today

and tomorrow.

8. This yields a probability distribution for daily changes in the value of our portfolio.
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Model-Building Approach

A major approach outside of the historical approach is to use model approach.

Daily Volatilities

• Usually we measure volatilities in years. Model-building approach to VaR, we measure time in

days and the volatility of an asset is usually quoted as ”volatility per day”

• Define σyear to be the volatility per year of a certain asset and σday as the equivalent volatility

per day of the asset. Assuming 252 trading days per year, we use

σyear = σday

√
252 = σday

√
N

or

σday =
σyear√

252
≈ 0.063σyear

• σday is approximately equal to the standard deviation of the percentage change in the asset

price in one day. For purposes of calculating VaR we assume exact equality. We define the daily

volatility of an asset price as equal to the standard deviation of the percentage change in one

day.
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Linear Model

To calculate the standard deviation of ∆P , we define σi as the daily volatility of the ith asset and

ρij as the coefficient of correlation between returns on asset i and asset j. This means that σi is

the standard deviation of ∆xi and ρij is the coefficient of correlation between ∆i and ∆xj.

The variance of ∆P , denoted σ2
P is given by

σ
2
P =

nX
i=1

nX
j=1

ρijαiαjσiσj

or

σ
2
P =

nX
i=1

α
2
i σ

2
i + 2

nX
i=1

X
j<i

ρijαiαjσiσj (14)

The standard deviation of the change over N days is σP

√
N , and the 99% VaR for an N -day

time horizon is 2.33σP

√
N .
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Linear Model and Options

• Consider how a linear model can be used when there are options. Consider first a portfolio

consisting of options on a single stock whose current price is S.

• Suppose that the delta of the position is δ. Since δ is the rate of change of the value of the

portfolio with S, it is approximately true that

δ =
∆P

∆S

or

∆P = δ∆S

where ∆S is the dollar change in the stock price in 1 day and ∆P is the dollar change in the

portfolio in 1 day.

• We define ∆x as the percentage change in the stock price in 1 day, so that

∆x =
∆S

S

• It follows that an approximate relationship between ∆P and ∆x is

∆P = Sδ∆x

• When we have several underlying market variables that includes options, we can derive an

approximate linear relationship between ∆P and ∆x similarly.
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• The relationship is

∆P =
nX

i=1

Siδi∆xi

where Si is the value of the ith market variable and δi is the delta of the portfolio with respect

to the ith market variable. This yields

∆P =

nX
i=1

αi∆xi

with αi = Siδi.
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Comparison of Approaches

Two methods

• Historical Simulation: historical data determines the joint probability distribution of the

market variables. Advantage - avoids the need for cash-flow mapping. Disadvantages -

computationally expensive and does not easily allow volatility updating schemes.

• Model Building: Advantages - results can be produced very quickly and can be used in

conjunction with volatility updating schemes. Disadvantages - assumes that the market

variables have a multivariate normal distribution (daily changes are usually not normally

distributed) and gives poor results for small delta portfolios.
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Estimating Volatilities and Correlations

We discuss how to use historical data to extract estimates on the current and future levels of

volatilities and correlations.

Estimating Volatility: Define σn as the volatility of a market variable on day n, as estimated at

the end of day n− 1. The square of the volatility, σ2
n, on day n is the variance rate. We

described the standard approach to estimating σn from historical data.

Suppose that the value of the market variable at the end of day i is Si. The variable ui is defined

as the continuously compounded return during day i

ui = ln
Si

Si−1

An unbiased estimate of the variance rate per day, σ2
n using the most recent m observations on

the ui is

σ
2
n =

1

m− 1

mX
i=1

(un−i − u)
2

where u is the mean of the ui’s:

u =
1

m

mX
i=1

um−i
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For the purposes of monitoring daily volatility, the formula is usually changed in a number of ways

1. ui is defined as the percentage change in the market variable between the end of the day i− 1

and the end of day i so that

ui =
Si − Si−1

Si−1

≈ ln(1 +
Si − Si−1

Si−1

) (15)

2. u is assumed to be zero

3. m− 1 is replaced by m

These three changes make very little difference to the estimates that are calculated, but they allow

us to simplify the formula for the variance rate to

σ
2
n =

1

m

mX
i=1

u
2
n−i (16)

where ui is given by (15).
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Weighting Schemes

The sigma given by (16) gives equal weight to

u
2
n−1, u

2
n−2, . . . , u

2
n−m

Our objective is to estimate the current level of volatility σn. Therefore, it makes sense to give

more wieght to recent data. One such model is

σ
2
n =

mX
i=1

αiu
2
n−i (17)

The variable αi is the amount of weight given to the observation i days ago. The α’s are positive.

If we choose them so that αi < αj when i > j, less weight is given to older observations. The

weights must sum to unity, so we have
mX

i=1

αi = 1
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Weighting Schemes, cont.

An extension of the idea, called ARCH(m) or Autoregressive Conditional Heteroscedasticity
in equation (17) is to assume that there is a long-run average variance rate and that this should be

given some weight. This leads to the model that takes the form

σ
2
n = γVL +

mX
i=1

αiu
2
n−i (18)

where VL is the long-run variance rate and γ is the weight assigned to VL. Because the weights

must sum to unity, we have

γ +

mX
i=1

αi = 1

Define ω = γVL, the model equation becomes

σ
2
n = ω +

mX
i=1

αiu
2
n−i (19)
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Exponentially Weighted Moving Average Model

The Exponentially Weighted Moving Average Model or EWMA is a particular case of (17)

where the weights αi decrease exponentially as we move back through time.

Specifically αi+1 = λαi, where λ is a constant between 0 and 1.

The formula is

σ
2
n = λσ

2
n−1 + (1− λ) u

2
n−1 (20)

The estimate σn of the volatility of day n is calculated from σn−1 and un−1.

We can see why this corresponds to exponentially decreasing weights. Continuing yields

σ
2
n = (1− λ)

mX
i=1

λ
i−1

u
2
n−i + λ

m
σ

2
n−m (21)

For large m, the term λmσ2
n−m is sufficiently small to be ignored so that this is the same as a

equation with

αi = (1− λ) λ
i−1

The weights for the ui decline at rate λ as we move back through time. Each weight is λ times

the previous weight.
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EWMA cont.

• The EWMA approach is attractive since only relatively little data needs to be stored.

• At any give time, we need to store only the current estimate of the variance rate and the most

recent observation on the value of the market variable.

• When we get a new observation on the value of the market variable, we calculate a new daily

percentage change and use equation

σ
2
n = λσ

2
n−1 + (1− λ)u

2
n−1

to update our estimate of the variance rate.

• The value of λ governs how responsive the estimate of the daily volatility is to the most recent

daily percentage change.

• A low value of λ leads to a great deal of weight being given to the u2
n−1 when σn is calculated.

• A high value of λ (close to 1.0) produces estimates of the daily volatility that respond relatively

slowly to new information provided by the daily percentage change
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The GARCH(1,1) Model

A more generalized method to generate volatilities is the GARCH(1,1), or generalized
autoregressive conditional heteroscedasticity.

• GARCH(1,1) differs from EWMA by including a long-run variance rate. σ2
n is calculated from a

long-rn average variance rate VL as well as from σ2
n−1 and un−1:

σ
2
n = γVL + αu

2
n−1 + βσ

2
n−1

where γ is the weight assigned to VL, α is the weight assigned to u2
n−1, and β is the weight

assigned to σ2
n−1.

• The weights must sum as

γ + α + β = 1

• EWMA is a particular case of GARCH(1,1) with γ = 0, α = 1− λ, and β = λ.

• The (1, 1) in GARCH(1,1) implies that σ2
n is based on the most recent observation of u2 and

the most recent estimate of the variance rate
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GARCH(1,1), cont.

• Setting ω = γVL, the GARCH(1,1) model can also be written

σ
2
n = ω + αu

2
n−1 + βσ

2
n−1

• This is the form of the model that is usually used for the purposes of estimating the parameters.

• Once ω, α, and β have been estimated, we can calculate γ as 1− α− β. The long-term

variance VL can then be calculated as ω/γ.

• For a stable GARCH(1,1) process we require α + β < 1. Otherwise the weight applied to the

long-term variance is negative
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GARCH(1,1), cont.

The Weights:
Substituting for σ2

n−1 in the GARCH(1,1) model, we obtain

σ
2
n = ω + αu

2
n−1 + β

“
ω + αu

2
n−2 + βσ

2
n−2

”

The weights decline exponentially at rate β.

The parameter β can be interpreted as a decay rate. It is similar to λ in the EWMA model.

It defines the relative importance of the observations on the u’s in determining the current

variance rate.

Mean Reversion
The GARCH(1,1) model recognizes that over time the variance tends to get pulled back to a

long-run average level of VL.
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Choosing Between Models

In practice, variance rates ten to be mean reverting. The GARCH(1,1) model incorporates mean

reversion, whereas EWMA model does not. The GARCH(1,1) model is therefore theoretically more

appealing than the EWMA model.

In circumstances where the best-fit value of ω turns out to be negative, the GARCH(1,1) model is

not stable and it makes sense to switch to EWMA model.
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Maximum Likelihood Methods

Now appropriate to discuss how the parameters in the models we have been considering are

estimated from historical data. We use the maximum likelihood method. We choose parameters

that maximize the chance of the data occurring.

Consider the problem of estimating a variance of a variable X from m observations on X when

the underlying distribution is normal with mean zero.

We assume that the the observations are u1, u2, . . . , um and that the mean of the underlying

distribution is zero. Denote the variance by v. The likelihood of ui being observed is the

probability density function for X when X = ui. This is

1
√

2πv
exp

"
−

u2
i

2v

#

The likelihood of m observations occurring in the order in which they are observed is

mY
i=1

"
1

√
2πv

exp

"
−

u2
i

2v

##
(22)
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Using the maximum likelihood method, the best estimate of v is the value that maximizes this

expression.

Maximizing an expression is equivalent to maximizing the logarithm of the expression. Taking

logarithms of the expression in (22).

Ignoring constant multiplicative factors, it can be seen that we wish to maximize

mX
i=1

"
− ln(v)−

u2
i

v

#

or

−m ln(v)−
mX

i=1

u2
i

v

Differentiating this expression with respect to v and setting the result equation to zero, we see

that the maximum likelihood estimator of v is

1

m

mX
i=1

u
2
i
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Correlations

Correlations are important, as seen from last week, for computing VaR. We show how correlation

estimates can be updated in a similar way as volatility estimates.

The correlation between two variables X and Y can be defined by

cov(X, Y )

σXσY

where σX is the standard deviation of X, σY is the standard deviation of Y , and cov(X, Y ) is

the covariance between X and Y . The covariance between X and Y is defined as

E [(X − µX) (Y − µY )]

where µX and µY are the means of X and Y . Easier to develop methods for the covariances as

opposed to the correlations.
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• Define xi and yi as the percentage changes in the values of X and Y between the end of day

i− 1 and the end of day i:

xi =
Xi −Xi−1

Xi−1

yi =
Yi − Yi−1

Yi−1

where Xi and Yi are the values of X and Y at the end day i.

• We also define the following

– σx,n - daily volatility of variable X, estimated for day n

– σy,n - daily volatility of variable Y , estimated for day n

– covn - daily covariance between daily changes in X and Y , estimated for day n

• Then we estimate the correlation between X and Y on day n as

covn

σx,nσy,n

• We use an equal-weighting scheme and assuming that the means of xi and yi are zero, then we

can estimate the variance rates of X and Y from the most recent m observations as

σx,n =
1

m

mX
i=1

x
2
n−i σy,n =

1

m

mX
i=1

y
2
n−i

A similar estimate for the covariance between X and Y is

covn =
1

m

mX
i=1

xn−iyn−i (23)
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One alternative for updating covariances is an EWMA model similar we find

covn = λ covn−1 + (1− λ) xn−1yn−1

A similar analysis to that presented for the EWMA volatility model shows that the weights given

observations on the xiyi decline as we move back through time. The lower the value of λ the

greater the weight that is give to recent observations.
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Consistency Condition for Covariances

Once all the variances and covariances have been computed, a variance-covariance matrix can be

constructed. When i 6= j, the (i, j) element of the matrix shows the covariance between variable

i and variable j. When i = j it shows the variance of variable i.

Not all variance-covariance matrices are internally consistent. The condition for an N ×N

variance-covariance matrix Ω to be internally consistent is

w
T
Ωw ≥ 0

for all N × 1 vectors w, where wT is the transpose of w. Such matrices are positive
semi-definite.

To ensure that a positive-semidefinite matrix is produced, variances and covariances should be

calculated consistently. For example, if variances are calculated by giving equal weight to the last

m data items, the same should be done for covariances.
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Midterm

Concentrate on:

• Chapter 13 - Chapter 19 with emphasis on Chapters 17-19.

Options, Futures, Derivatives / March 10, 2008 89


