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1. Introduction

In your integral calculus class, you needed some explicit finite sums to
evaluate definite integrals. For example,∫ 1

0
x dx↔ 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2∫ 1

0
x2 dx↔ 12 + 22 + 3 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6

You proved these idenities by induction on n.
But much more is true. In fact, if k is a positive integer, we will see that

1k + 2k + 3 + · · ·+ nk

is a polynomial in n of degree k + 1, whose leading term is

nk+1

k + 1
.

This leading term explains why∫ 1

0
xk dx =

1

k + 1
.

We will give two explicit formulas for this polynomial, using two sets of
numbers: the Stirling numbers of the second kind, and Bernoulli numbers.

2. Stirling numbers

Definition 2.1. A set partition Π of [n] = {1, 2, · · · , n} is an unordered
decomposition of [n] into disjioint sets, which are called blocks.

Example 2.2. Let n = 8,and Π = {1, 4, 6} ∪ {2, 7} ∪ {3} ∪ {5, 8}. {2, 7} is
a block of Π. This π has 4 blocks. We can write this in shorthand notation
as 146|27|3|58.

Definition 2.3. The number of set partitions of [n] with exactly k blocks is
the Stirling number of the 2nd kind, S(n, k).

Example 2.4. S(3, 2) = 3 because the set partitions of [3] with 2 blocks are

1|23, 12|3, 13|2.
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Exercise 2.5. Find S(4.2) and a general formula for S(n, n−1) and S(n, 2).

Here are two recurrences for the Stirling numbers S(n, k).

Proposition 2.6. We have for 1 ≤ k ≤ n
S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

Proof. Given any Π with exactly k blocks consider if the point n is in a
block of Π by itself, or not, in one of the k blocks. These are the two terms
on the right side. Note here that S(n, 0) = 0 for n > 0, and S(0, 0) = 1. �

Proposition 2.7. We have for 1 ≤ k ≤ n

S(n, k) =

n−1∑
s=0

(
n− 1

s

)
S(n− 1− s, k − 1).

Proof. This time consider the block in which n appears. It has size s + 1
for some integer s. Choosing the other s points in this block allows

(
n−1
s

)
choices. What remains is a set partition with k − 1 blocks on n − 1 − s
points. �

Definition 2.8. The total number of set partitions of [n] is the nth Bell
number,

Bn =

n∑
k=1

S(n, k).

Exercise 2.9. Find B4.

3. Bases of polynomials and Stirling numbers

Consider the vector space Vn of polynomials of degree at most n with
complex coefficients. The usual basis for this space consists of the powers
of x:

{1, x, x2, · · · , xn}.
This basis is well adapted to calculus, the derivative maps one element to
the previous one

d

dx
(xk) = kxk−1.

For discrete situations, another basis is well adapted,

{1, x, x(x− 1), · · · , x(x− 1) · · · (x− n+ 1)}.
The difference operator

(∆f)(x) = f(x+ 1)− f(x)

again shifts these basis elements

(∆(x(x− 1) · · · (x− k + 1)))(x) = kx(x− 1) · · · (x− k + 2).

The Stirling numbers S(n, k) gives the change of basis matrix for these
two bases.
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Proposition 3.1. We have for n ≥ 1,

xn =
n∑

k=1

S(n, k)x(x− 1) · · · (x− k + 1)

Example 3.2.

x3 =S(3, 1)x+ S(3, 2)x(x− 1) + S(3, 3)x(x− 1)(x− 2)

=x+ 3x(x− 1) + x(x− 1)(x− 2).

Proof. I’ll give three proofs of this result, one which is combinatorial, the
other two recursive (by induction.)

Proof #1: Let’s prove this identity for all positive integers x. Since it is
a polyomial identity over the complex numbers, it must be true for all x.

Let count all functions f : [n] → [x]. Since each functional value has x
choices, there are xn such functions, which is the left side. For the right
side, suppose the the image of f consists of k points. There are

(
x
k

)
choices

for this image. The preimage of f consists of an ordered set parittion of [n]
into k blocks, S(n, k)k! choices, so

xn =
n∑

k=1

S(n, k)

(
x

k

)
k!,

which is what we needed to prove.
Proof #2: Let’s run an induction on n, n = 1, 2 is clear. Consider

n+1∑
k=1

S(n+ 1, k)x(x− 1) · · · (x− k + 1) =

n+1∑
k=1

(S(n, k − 1) + kS(n, k))x(x− 1) · · · (x− k + 1) =

n∑
k=1

S(n, k)x(x− 1) · · · (x− k) +

n∑
k=1

kS(n, k)x(x− 1) · · · (x− k + 1) =

n∑
k=1

S(n, k)(x− k + k)x(x− 1) · · · (x− k + 1) =

x ∗ xn = xn+1.
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Proof #3: Let’s run an induction on n, this time using the second
recursion for the Stirling numbers. Consider

n+1∑
k=1

S(n+ 1, k)x(x− 1) · · · (x− k + 1) =

n+1∑
k=1

n∑
s=0

(
n

s

)
S(n− s, k − 1)x(x− 1) · · · (x− k + 1) =

n∑
s=0

(
n

s

) n∑
k=1

S(n− s, k − 1)x(x− 1) · · · (x− k) =

n∑
s=0

(
n

s

)
x

n∑
k=1

S(n− s, k − 1)(x− 1) · · · (x− k) =

n∑
s=0

(
n

s

)
x(x− 1)n−s =

x ∗ xn = xn+1

where we have the binomial theorem.
�

The inverse change of basis matrix is given by signed Stirling numbers of
the first kind.

4. Sums of powers

We now can state the polynomial formula for sums of powers using Stirling
numbers of the second kind.

Theorem 4.1. For a positive integer k,

1k + 2k + · · ·+ nk =

k∑
j=1

S(k, j)
(n+ 1)n ∗ · · · ∗ (n− j + 1)

j + 1
.

Example 4.2. If k = 3 this is

13 + 23 + · · ·+ n3 = S(3, 1)(n+ 1)n/2 + S(3, 2)(n+ 1)n(n− 1)/3

+ S(3, 3)(n+ 1)n(n− 1)(n− 2)/4

= (n+ 1)n/2 + 3(n+ 1)n(n− 1)/3 + (n+ 1)n(n− 1)(n− 2)/4

= n2(n+ 1)2/4.

We will now prove Theorem 4.1. Let

Sk(n) = 1k + 2k + · · ·+ nk.

We need to solve the difference equation

Sk(n)− Sk(n− 1) = nk.
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If the right side were a different polynomial in n of degree k, say(
n

k

)
we would know a solution by Pascal’s triangle, namely

Ak(n) =

(
n+ 1

k + 1

)
satisfies

Ak(n)−Ak(n− 1) =

(
n

k

)
.

So we just expand nk in terms of the binomial coefficients using Proposi-
tion 3.1, to get the solution

Sk(n) =
k∑

j=1

S(k, j)j!

(
n+ 1

j + 1

)

=
k∑

j=1

S(k, j)
(n+ 1) ∗ n ∗ · · · ∗ (n− j + 1)

j + 1

This sum may be expanded in the usual polynomial basis, nj , using
Bernoulli numbers.

Definition 4.3. The Bernoulli numbers Bern are defined by
∞∑
n=0

Bern
zn

n!
=

z

ez − 1
= Ber(z).

Example 4.4. The first few values are

Ber0 = 1, Ber1 = −1/2, Ber2 = 1/6, Ber3 = 0, Ber4 = −1/30.

In fact all odd Bernoulli values are zero except for Ber1.

Exercise 4.5. Check that Ber(z) + z/2 is an odd function of z.

It is somewhat more convenient to modify the Bernoulli numbers to B̂ernn
by changing the sign of a single term, B̂er1 = 1/2.

Theorem 4.6. For a positive integer k,

1k + 2k + · · ·+ nk =
1

k + 1

k∑
j=0

(
k + 1

j

)
B̂erjn

k+1−j .

Note that the leading term is nk+1/(k + 1), as promised.

Example 4.7. If k = 3, this is

13 + 23 + · · ·+ n3 =
1

4
(B̂er0n

4 + 4B̂er1n
3 + 6B̂er2n

2 + 4B̂er3n
1))

=
1

4

(
n4 + 2n3 + n2

)
= n2(n+ 1)2/4.
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