1. Give examples of a finite ranked poset P such that
(a) P has the matching property but is not Sperner.
(b) P is rank unimodal but not Sperner.
(c) P is Sperner but not rank unimodal.
(d) P is Sperner and rank unimodal, but does not have the matching property.

2. Prove that if P is Sperner, and P_{\max} is a maximum level, then the bipartite graphs
$$P_{\max-1} \cup P_{\max} \quad \text{and} \quad P_{\max+1} \cup P_{\max}$$
both have complete matchings.

3. Characterize all maximum sized antichains in the Boolean algebra B_N.

4. What is the Greene-Kleitman partition for the Boolean algebra B_N?

5. Can one prove log-concavity of the coefficients of the polynomial $\left[\begin{array}{c} n \\ k \end{array} \right]_q$ using reality of the zeros?

6. Prove that $B_n(q)$ is Sperner by verifying that it is rank unimodal and has the matching property.

7. Here is another way to verify that $P = B_N(q)$ has the matching property. For $0 \leq k \leq N$ let W_k be the \mathbb{R} vector space whose basis is given by elements at level k of $B_N(q)$, so $\dim(W_k) = \left[\begin{array}{c} N \\ k \end{array} \right]_q$.
Let $D_k : W_k \to W_{k-1}$ and $U_k : W_k \to W_{k+1}$, $0 \leq k \leq N$, be the natural down and up linear transformations using the edges of $B_N(q)$.
(a) What is $D_{k+1}U_k - U_{k-1}D_k$ as a linear transformation on W_k?
(b) Show if $2k < n$, the map U_k is 1-1, and find $\text{rank}(U_k)$.
(c) Show that the matrix of U_k has a non-singular $\left[\begin{array}{c} N \\ k \end{array} \right]_q \times \left[\begin{array}{c} N \\ k \end{array} \right]_q$ submatrix, and conclude that a complete matching from P_k to P_{k+1} exists.

8. Let $\lambda_n = (n-1, n-2, \ldots, 1)$ be the “staircase” partition. Let $P_n = [\emptyset, \lambda_n]$ be the interval in Young’s lattice, namely the set of all partitions μ whose Ferrers diagram fit inside λ_n, under containment of Ferrers diagrams.
(a) Show that $|P_n| = C_n = \frac{1}{n+1} \binom{2n}{n}$, the n^{th} Catalan number.
(b) If $R_n(q)$ is the rank generating function of P_n, find a version of $C_n = \sum_{k=1}^{n} C_{k-1}C_{n-k}, n \geq 1$, for $R_n(q)$.
(c) Is P_n rank symmetric, rank unimodal*, or Sperner*?
(d) True or False?
$$\sum_{n=0}^{\infty} \frac{R_n(1/q)q^n (2^n)t^n}{(1-q)(1-q^2)\cdots(1-q^n)} = \sum_{n=0}^{\infty} \frac{(-t)^n q^{n^2}}{(1-q)(1-q^2)\cdots(1-q^n)} \sum_{n=0}^{\infty} \frac{(-t)^n q^{2n^2-n}}{(1-q)(1-q^2)\cdots(1-q^n)}$$
9. Let \(P_n = NC(n) \) the poset of non-crossing set partitions under refinement of blocks. Recall that \(|P_n| = C_n = \frac{1}{n+1} \binom{2n}{n} \), the \(n \)th Catalan number, and the \(k \)th level numbers are the Narayana numbers \(N_{n,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k} \), \(0 \leq k \leq n-1 \).

(a) Verify that \(P_n \) is a rank symmetric, rank unimodal poset.
(b) Verify that \(P_1, P_2, P_3, P_4 \) have symmetric chain decompositions by exhibiting one such decomposition on each Hasse diagram.
(c) Prove that \(P_n \) has a symmetric chain decomposition.

10. The inequality that we used for log-concavity
\[
e_k(x_1, \ldots, x_n)^2 \geq e_{k-1}(x_1, \ldots, x_n)e_{k+1}(x_1, \ldots, x_n), \quad 0 \leq k \leq n-1, \quad x_i > 0
\]
is a weaker version of the Newton inequalities
\[
\left(\frac{e_k(x_1, \ldots, x_n)}{\binom{n}{k}} \right)^2 \geq \left(\frac{e_{k-1}(x_1, \ldots, x_n)}{\binom{n}{k-1}} \right) \left(\frac{e_{k+1}(x_1, \ldots, x_n)}{\binom{n}{k+1}} \right), \quad 0 \leq k \leq n-1, \quad x_i > 0.
\]

(a) Take \(k = 1 \) and \(n = 3 \) and show that the Newton inequalities do not follow from termwise polynomial positivity.
(b) Prove the Newton inequalities by induction on \(n \), fixing \(k \). First verify the case \(n = k + 1 \) by showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming \(0 < x_1 < x_2 < \cdots < x_n \) and letting
\[
P(t) = \prod_{i=1}^n (t + x_i), \quad P'(t) = n \prod_{i=1}^{n-1} (t + x'_i)
\]
where \(x_i < x'_i < x_{i+1} \). Use
\[
(n)e_k(x'_1, x'_2, \ldots, x'_{n-1}) = (n-k)e_k(x_1, \ldots, x_n), \quad 0 \leq k \leq n-1
\]
in the induction.

11. Let \(P \) be finite ranked poset and suppose that \(G \leq \text{Aut}(P) \). Define a poset \(P/G \) whose elements are the orbits \(O \) of \(G \) on \(P \), with order relation \(O_1 \leq O_2 \) if \(\exists \) there exists \(x \in O_1, y \in O_2 \), with \(x \leq y \) in \(P \). True or False: If \(P \) is Sperner, then \(P/G \) is Sperner.

12. In this problem you will prove the unimodality of the \(q \)-binomial coefficient by using an explicit formula, called the KOH identity.

First some notation. For an integer partition \(\lambda \), let \(|\lambda| \) be the sum of the parts of \(\lambda \). Let \(\lambda' \) be the conjugate of \(\lambda \), and let \(m_i(\lambda) \) be the multiplicity of the part \(i \) in \(\lambda \). For example, if \(\lambda = 544422111 \), then \(|\lambda| = 24, \lambda' = 96441 \), and \(m_4(\lambda) = 3 \). Finally, let
\[
n(\lambda) = \sum_i (i-1)\lambda_i = \sum_j \binom{\lambda'_j}{2}.
\]

It is
\[
\binom{N + k}{k}_q = \sum_{\lambda, |\lambda| = k} q^{2n(\lambda)} \prod_{i=1}^N \left((N + 2)i - 2 \sum_{j=1}^{\lambda'_i} \lambda'_j + m_i(\lambda) \right) \binom{M}{3}_q.
\]

(a) Write out (KOH) for \(k = 3 \) and explain why it recursively proves that \(\binom{M}{3}_q \) is a unimodal polynomial in \(q \).
(b) Repeat (a) for a general \(k \) by showing that the individual terms in (KOH) are “centered” correctly.