2. Prove that if P is Sperner, and P_{max} is a maximum level, then the bipartite graphs

$$P_{\text{max}-1} \cup P_{\text{max}} \quad \text{and} \quad P_{\text{max}+1} \cup P_{\text{max}}$$

both have complete matchings.

Solution: Suppose, by contradiction, that there is no complete match from $P_{\text{max}-1} \rightarrow P_{\text{max}}$. Then by Hall’s theorem there exists a subset $S \subset P_{\text{max}-1}$ whose relatives $R(S) \subset P_{\text{max}}$ satisfy $|S| > |R(S)|$. Then $A = S \cup (P_{\text{max}} - R(S))$ is an antichain of size larger than P_{max}, which is a contradiction.

3. Characterize all maximum sized antichains in the Boolean algebra B_N.

Solution: Claim: The maximum sized antichains are precisely the maximum sized level sets, and no others.

As in lecture, the LYM property for B_N implies that a maximum sized antichain must lie inside the maximum levels. So for N even this is unique. Let’s assume $N = 2m + 1$ is odd, and prove that a maximum sized antichain A could not be in both levels, $A = A_1 \cup A_2$, $\emptyset \neq A_1 \subset B_N(m)$, $\emptyset \neq A_2 \subset B_N(m+1)$ is impossible.

Note that the bipartite graph $G = B_N(m) \cup B_N(m+1)$ is regular of degree $m+1$. Let $R(A_1) \subset B_N(m+1)$ be the relatives of A_1. Because we know that a complete match exists in G, by Hall’s condition $|A_1| \leq |R(A_1)|$. But since $A_2 \subset B_N(m+1) - R(A_1)$ and $|A_1| + |A_2| = \binom{2m+1}{m}$, we have $|A_1| = |R(A_1)|$, so each of the $|A_1| |A_1|$ edges from A_1 go to $R(A_1)$, and each of the $(m+1)|A_1|$ edges from $R(A_1)$ do in fact go to A_1. The same reasoning applies to A_2 and $R(A_2)$. So the bipartite graph G is disconnected, which is a contradiction.

7. Here is another way to verify that $P = B_N(q)$ has the matching property. For $0 \leq k \leq N$ let W_k be the \mathbb{R} vector space whose basis is given by elements at level k of $B_N(q)$, so $\dim(W_k) = \begin{bmatrix} N \\ k \end{bmatrix}_q$.

Let $D_k : W_k \to W_{k-1}$ and $U_k : W_k \to W_{k+1}$, $0 \leq k \leq N$, be the natural down and up linear transformations using the edges of $B_N(q)$.

(a) What is $D_{k+1}U_k - U_{k-1}D_k$ as a linear transformation on W_k?

(b) Show if $2k < n$, the map U_k is 1-1, and find $\text{rank}(U_k)$.

Solution: From (a) $D_{k+1}U_k = U_{k-1}D_k + c_k I$, where $c_k > 0$. As a amtrix $U_{k-1} = D_k^T$, so $U_{k-1}D_k$ is positvie semidefine, therefore $D_{k+1}U_k$ is positive definite, so invertible, This implies that $\ker(U_k) = \emptyset$ and U_k is injective and $\text{rank}(U_k) = \begin{bmatrix} N \\ k \end{bmatrix}_q$.

(c) Show that the matrix of U_k has a non-singular $\begin{bmatrix} N \\ k \end{bmatrix}_q \times \begin{bmatrix} N \\ k \end{bmatrix}_q$ submatrix, and conclude that a complete matching from P_k to P_{k+1} exists.

Solution: Any $m \times n$ matrix A with $\text{rank}(A) = m$ has an $m \times m$ non-singular matrix B, by choosing m linearly independent columns. Here we have

$$\det(B) = \sum_{\pi \in S_m} \text{sign}(\pi) \prod_{i=1}^{m} B_{\pi(i)},$$

and $\det(B) \neq 0$ implies that $B_{\pi(i)} \neq 0$ for all i for some $\pi \in S_m$.

Applying this to part (b), the permutation π gives the matching.
9. Let $P_n = NC(n)$ the poset of non-crossing set partitions under refinement of blocks. Recall that $|P_n| = C_n = \frac{1}{n+1} \binom{2n}{n}$, the nth Catalan number, and the kth level numbers are the Narayana numbers $N_{n,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k}$, $0 \leq k \leq n-1$.

(c) Prove that P_n has a symmetric chain decomposition.

Solution:

Let’s do this by induction on n, the first few cases were done in part (b). Since $\text{rank}(P_n) = n-1$, we need saturated chains whose bottom and top ranks add to $n-1$.

The main idea is to consider the block containing 1. Suppose the next smallest element in 1’s block

Next we prove the Newton inequalities by induction on n.

The main idea is to consider the block containing 1. Suppose the next smallest element in 1’s block

Finally we deal with the two remaining cases: 1 in a block by itself or 12 in a block. These are

10. The inequality that we used for log-concavity

$$e_k(x_1, \ldots, x_n)^2 \geq e_{k-1}(x_1, \ldots, x_n)e_{k+1}(x_1, \ldots, x_n), \quad 0 \leq k \leq n-1, \quad x_i > 0$$

is a weaker version of the Newton inequalities

$$\left(\frac{e_k(x_1, \ldots, x_n)}{\binom{n}{k}}\right)^2 \geq \left(\frac{e_{k-1}(x_1, \ldots, x_n)}{\binom{n}{k-1}}\right) \left(\frac{e_{k+1}(x_1, \ldots, x_n)}{\binom{n}{k+1}}\right), \quad 0 \leq k \leq n-1, \quad x_i > 0.$$
interlace with the zeros of $P(t)$, so we can write

$$P'(t) = n \prod_{i=1}^{n-1} (t + x'_i), \quad x_i < x'_i < x_{i+1}, \quad 1 \leq i \leq n - 1.$$

Finding the coefficient of t^{n-1-k} in $P'(t)$ gives

$$(n) e_k(x'_1, x'_2, \ldots, x'_{n-1}) = (n-k)e_k(x_1, \ldots, x_n) \quad 0 \leq k \leq n - 1.$$

So by induction

$$\left(\frac{e_k(x_1, \ldots, x_n)}{\binom{n}{k}} \right)^2 = \left(\frac{e_k(x'_1, \ldots, x'_{n-1})}{\binom{n-1}{k}} \right)^2$$

$$\geq \left(\frac{e_{k-1}(x'_1, \ldots, x'_{n-1})}{\binom{n-1}{k-1}} \right) \left(\frac{e_{k+1}(x'_1, \ldots, x'_{n-1})}{\binom{n-1}{k+1}} \right)$$

$$= \left(\frac{e_{k-1}(x_1, \ldots, x_n)}{\binom{n}{k-1}} \right) \left(\frac{e_{k+1}(x_1, \ldots, x_n)}{\binom{n}{k+1}} \right).$$

12. In this problem you will prove the unimodality of the q-binomial coefficient by finding an explicit formula, called the KOH identity.

First some notation. For an integer partition λ, let $|\lambda|$ be the sum of the parts of λ. Let λ' be the conjugate of λ, and let $m_i(\lambda)$ be the multiplicity of the part i in λ. For example, if $\lambda = 544422111$, then $|\lambda| = 24$, $\lambda' = 96441$, and $m_1(\lambda) = 3$. Finally, let

$$n(\lambda) = \sum_i (i-1)\lambda_i = \sum_j \binom{\lambda_j}{2}.$$

It is

$$(\text{KOH}) \quad \left[\begin{array}{c} N+k \\ k \end{array} \right]_q = \sum_{\lambda: |\lambda| = k} q^{2n(\lambda)} \prod_{i=1}^{\infty} \left(N+2i - 2 \sum_{j=1}^{\lambda'} \lambda_j + m_i(\lambda) \right)_q.$$

(a) Write out (KOH) for $k = 3$ and explain why it recursively proves that $\left[\begin{array}{c} M \\ 3 \end{array} \right]_q$ is a unimodal polynomial in q.

Solution: Since $k = 3$ there are 3 partitions in the sum on the right side $\lambda = 3, 21, 111$. The (KOH) identity becomes

$$\left[\begin{array}{c} N+3 \\ 3 \end{array} \right]_q = \left[\begin{array}{c} 3N+1 \\ 1 \end{array} \right]_q + q^2 \left[\begin{array}{c} N-1 \\ 1 \end{array} \right]_q \left[\begin{array}{c} 2N-1 \\ 1 \end{array} \right]_q + q^6 \left[\begin{array}{c} N-1 \\ 3 \end{array} \right]_q.$$

Now suppose we try to prove that $\left[\begin{array}{c} M \\ 3 \end{array} \right]_q$ is unimodal by induction on M. If we can show that each of the three terms in (1) is unimodal and centered at the same center as $\left[\begin{array}{c} N+3 \\ 3 \end{array} \right]_q$, which is $3N/2$, we are done. Since the second term is a product of symmetric unimodal polynomials, it is certainly symmetric and unimodal, as are the first and last (by induction) terms.

1. $\left[\begin{array}{c} 3N+1 \\ 1 \end{array} \right]_q$: smallest term q^0, largest term q^{3N}, $0 + 3N = 3N$ works.

2. $q^2 \left[\begin{array}{c} N-1 \\ 1 \end{array} \right]_q \left[\begin{array}{c} 2N-1 \\ 1 \end{array} \right]_q$: smallest term q^2, largest term $q^{2+(N-2)+(2N-2)}$, $2 + 3N - 2 = 3N$ works.
(3) $q^6 \left[\frac{N-1}{3} \right]_q$: smallest term q^6, largest term $q^{6+3(N-4)}$, $6 + 3N - 6 = 3N$ works.

(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are “centered” correctly.

Solution: The induction goes through as before, we must check the centering condition for each term. This is

$$2n(\lambda) + \left(2n(\lambda) + \sum_{i=1}^{\infty} m_i(\lambda)((N+2)i - 2 \sum_{j=1}^{i} \lambda'_i) \right) = kN.$$

Since

$$\sum_{i=1}^{\infty} m_i(\lambda)i = k$$

we must show that

$$2n(\lambda) + k = \sum_{i=1}^{\infty} m_i(\lambda) \sum_{j=1}^{i} \lambda'_i.$$

Here is an example how this is proven, the general case is the same.

Let $\lambda = 322111$, so $k = 10$, $n(\lambda) = 18$. Let compute $n(\lambda) + n(\lambda) + k$ pictorially:

```
0 0 0 5 2 0 1 1 1
1 1 4 1 1 1
2 2 3 0 1 1
3 2
4 1
5
```

Adding these we find

```
6 3 1
6 3
6 3
6
6
6
```

which is the right side of (2).