Dick Askey’s positive addition to Amsterdam

Tom Koornwinder

Korteweg-de Vries Institute, University of Amsterdam
T.H.Koornwinder@uva.nl

lecture at conference “Dick Askey’s 80th”, Madison, WI,
December 7, 2013

last modified: December 23, 2013
Askey’s sabbatical, Amsterdam, 1969–1970

Mathematisch Centrum, 2e Boerhaavestraat 49, Amsterdam
(earlier situation; in 1969 the top floor looked different)

http://beeldbank.amsterdam.nl/afbeelding/010003018854
Dick Askey reading a math book in his Dutch home, Amstelveen, 1970
Askey’s sabbatical (cntd.)

Contents

Lecture 1
Introduction

Lecture 2
Linearization of the product of two orthogonal polynomials

Lecture 3
Connexions between orthogonal polynomials of different classes

Lecture 4
Hypergeometric functions and their applications

Lecture 5
Some more positivity results

Lecture 6
Mean convergence of orthogonal series

Lecture 7
Gaussian quadrature

Lecture 8
Some open problems

Askey’s sabbatical (cntd.)

Lecturing in Amsterdam to interested PhD students

Nico Temme Herman Bavinck Tom K

and their boss prof. Hans Lauwerier
Dick liked the library of the Math. Centrum, as did some of his students.
Dick told in his lectures about his heroes, and about the wonder boy in the States who solved all his problems.

Gábor Szegő

George Gasper
Dick’s wise lessons

- Always try to write as hypergeometric function.
- Is your integral possibly a fractional integral?
- Depth is in positivity.
- Even more depth can be imported from group theory.
- What is the underlying addition formula?
- Study the old masters.
- Look for interactions with and applications to other fields.
- Special functions are useful functions! (Paul Turán)
Contents

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Lecture 1</td>
<td>CLASSICAL RESULTS FOR TRIGONOMETRIC POLYNOMIALS AND FOURIER SERIES AND OTHER ISOLATED RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>JACOBI POLYNOMIAL SERIES</td>
<td>7</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>FRACTIONAL INTEGRALS AND HYPERGEOMETRIC FUNCTIONS</td>
<td>19</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>ADDITION FORMULAS</td>
<td>29</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>LINEARIZATION OF PRODUCTS</td>
<td>39</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>RATIONAL FUNCTIONS WITH POSITIVE POWER SERIES COEFFICIENTS</td>
<td>47</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>CONNECTION COEFFICIENTS</td>
<td>57</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>POSITIVE SUMS</td>
<td>71</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>MORE POSITIVE SUMS AND APPLICATIONS</td>
<td>83</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>SUGGESTIONS FOR FURTHER WORK</td>
<td>93</td>
</tr>
</tbody>
</table>

References 99

Four canonical problems

\{p_n\} and \{q_n\} systems of orthogonal polynomials;

\[\int p_m(x)p_n(x)\,d\mu(x) = h_n \delta_{m,n}.\]

- product formula:
 \[p_n(x)p_n(y) = \int p_n(z)K(x, y, z)\,d\mu(z).\]

- transmutation:
 \[q_n(x) = \int p_n(y)A(x, y)\,d\mu(y).\]

- linearization of products:
 \[p_m(x)p_n(x) = \sum_{k=|m-n|}^{m+n} c_{m,n,k} p_k(x) / h_k.\]

- connection formula:
 \[q_n(x) = \sum_{k=0}^{n} a_{n,k} p_k(x) / h_k.\]

Find the integral and summation kernels explicitly and/or see when these kernels are nonnegative.
Two more topics

- **History of mathematics and mathematicians**

- **Compendia of special functions**

 Askey was very critical about most compendia that had appeared, except for *Higher transcendental functions*, which got his praise.
Later Askey was an associate editor of the *Digital Library of Mathematical Functions* (DLMF) and he was coauthor of three chapters therein.

http://dlmf.nist.gov/about/bio/RAAskey
Product formulas

\[p_n(x) p_n(y) = \int p_n(z) K(x, y, z) \, d\mu(z) \]

\[K(x, y, z) = \sum_{n=0}^{\infty} \frac{p_n(x) p_n(y) p_n(z)}{h_n} \]
Gegenbauer product formula

Jacobi polynomials \((\alpha, \beta > -1)\):

\[
R_n^{(\alpha, \beta)}(x) := \frac{P_n^{(\alpha, \beta)}(x)}{P_n^{(\alpha, \beta)}(1)}, \quad d\mu_{\alpha, \beta}(x) := \frac{(1 - x)^\alpha(1 + x)^\beta}{\int_{-1}^{1} (1 - x)^\alpha(1 + x)^\beta \, dx},
\]

\[
\int_{-1}^{1} R_m^{(\alpha, \beta)}(x) R_n^{(\alpha, \beta)}(x) \, d\mu_{\alpha, \beta}(x) = h_n^{(\alpha, \beta)} \delta_{m,n}.
\]

Gegenbauer product formula \((\alpha > -\frac{1}{2})\):

\[
R_n^{(\alpha, \alpha)}(x) R_n^{(\alpha, \alpha)}(y) = \int_{-1}^{1} R_n^{(\alpha, \alpha)}(xy + (1 - x^2)^{\frac{1}{2}}(1 - y^2)^{\frac{1}{2}} t) \, d\mu_{\alpha-\frac{1}{2}, \alpha-\frac{1}{2}}(t).
\]

For \(\alpha = -\frac{1}{2}\):

\[
\cos n\phi \cos m\psi = \frac{1}{2} \left(\cos n(\phi + \psi) + \cos n(\phi - \psi) \right).
\]

Generalized translation (Levitan, Bochner, Hirschman):

\[
T_y[f](x) := \int_{-1}^{1} f(xy + (1 - x^2)^{\frac{1}{2}}(1 - y^2)^{\frac{1}{2}} t) \, d\mu_{\alpha-\frac{1}{2}, \alpha-\frac{1}{2}}(t).
\]

Positivity of generalized translation:

\[
f(x) = \sum_{n=0}^{\infty} \frac{\hat{f}(n) R_n^{(\alpha, \alpha)}(x)}{h_n} \geq 0 \iff T_y[f](x) = \sum_{n=0}^{\infty} \frac{\hat{f}(n) R_n^{(\alpha, \alpha)}(x) R_n^{(\alpha, \alpha)}(y)}{h_n} \geq 0.
\]
Product formula and generalized translation in kernel form:

\[R_n^{(\alpha,\alpha)}(x) R_n^{(\alpha,\alpha)}(y) = \int_{-1}^{1} R_n^{(\alpha,\alpha)}(z) K_{\alpha,\alpha}(x, y, z) \, d\mu_{\alpha,\alpha}(z), \]

\[T_y[f](x) = \int_{-1}^{1} f(z) K_{\alpha,\alpha}(x, y, z) \, d\mu_{\alpha,\alpha}(z), \quad \text{where} \]

\[K_{\alpha,\alpha}(x, y, z) = \sum_{n=0}^{\infty} R_n^{(\alpha,\alpha)}(x) R_n^{(\alpha,\alpha)}(y) R_n^{(\alpha,\alpha)}(z) / h_n^{(\alpha,\alpha)} \]

\[= \frac{\Gamma(\alpha + 1)^2}{\Gamma(\alpha + \frac{1}{2}) \Gamma(\alpha + \frac{3}{2})} \frac{(1 - x^2 - y^2 - z^2 + 2xyz)^{\frac{\alpha-1}{2}}}{((1 - x^2)(1 - y^2)(1 - z^2))^\alpha} \geq 0. \]

Convolution:

\[(f \ast g)(x) := \int_{-1}^{1} T_y[f](x) g(y) \, d\mu_{\alpha,\alpha}(y) = \int_{-1}^{1} \int_{-1}^{1} f(z) g(y) \]

\[\times K_{\alpha,\alpha}(x, y, z) \, d\mu_{\alpha,\alpha}(y) \, d\mu_{\alpha,\alpha}(z) = \sum_{n=0}^{\infty} \frac{\hat{f}(n)\hat{g}(n) R_n^{(\alpha,\alpha)}(x)}{h_n^{(\alpha,\alpha)}}. \]
Convolution algebra

Put \(\|f\|_1 := \int_{-1}^{1} |f(x)| \, d\mu_{\alpha,\alpha}(x) \). Then we conclude:

\[
\|f* g\|_1 \leq \|f\|_1 \, \|g\|_1, \quad \|f* g\|_\infty \leq \|f\|_\infty \, \|g\|_1, \quad f, g \geq 0 \Rightarrow f* g \geq 0.
\]

The same machinery would work for other orthogonal systems, provided we have a product formula with positive kernel.

Gegenbauer case \(\alpha = \frac{1}{2}(d - 3) \) by group theory:
\[G = O(d), \quad K = O(d - 1), \quad \Omega = G/K = S^{d-1} \] (Gelfand pair).

\[(f * g)(x) = (g * f)(x) = \int_G f(y) \, g(y^{-1} x) \, dy \quad (f, g \text{ } K\text{-biinvariant}),\]

\[(F * G)(\langle x, y \rangle) = \int_{\Omega} F(\langle x, z \rangle) \, G(\langle z, y \rangle) \, d\omega(z) \quad (x, z \in \Omega),\]

\[\phi(x) \, \phi(y) = \int_K \phi(xky) \, dk \quad (x, y \in G, \quad \phi(x) = R_n^{(\alpha,\alpha)}(\langle xe_1, e_1 \rangle)).\]

\(\phi \) is spherical function (Gelfand); immediate positivity results; works also for certain other Jacobi parameters (Gangolli).
Askey & Wainger (1969) attacked the analogous Jacobi problem for $\alpha > \beta > -\frac{1}{2}$. Not yet positivity but boundedness:

$$\int_{-1}^{1} \left| \sum_{n=0}^{\infty} r^n R_n^{(\alpha,\beta)}(x) R_n^{(\alpha,\beta)}(y) R_n^{(\alpha,\beta)}(z) \right| d\mu_{\alpha,\beta}(z) \leq M \ (0 \leq r < 1),$$

Then $\| f * g \|_1 \leq M \| f \|_1 \| g \|_1$.

Gasper (1971) showed that

$$R_n^{(\alpha,\beta)}(x) R_n^{(\alpha,\beta)}(y) = \int_{-1}^{1} R_n^{(\alpha,\beta)}(z) K_{\alpha,\beta}(x, y, z) \, d\mu_{\alpha,\beta}(z)$$

with $K_{\alpha,\beta}(x, y, z) \geq 0$ as a definite integral of an explicit nonnegative elementary function. In fact he found this by combining two formulas in Watson’s *Treatise on the theory of Bessel functions*, see there pages 411 and 413.
Watson essentially has the same nonnegative kernel in the following two product formulas ($\alpha > \beta > -\frac{1}{2}$):

$$\frac{J_\alpha(x)}{x^\alpha} \frac{J_\beta(y)}{y^\beta} = \frac{1}{2^\alpha \Gamma(\alpha + 1)} \int_0^\infty \frac{J_\beta(z)}{z^\beta} K_{\alpha,\beta}(x, y, z) z^{2\beta + 1} \, dz,$$

$$R_n^{(\alpha,\beta)}(\cos 2\theta_1) R_n^{(\alpha,\beta)}(\cos 2\theta_2) = \int_0^{\pi/2} R_n^{(\alpha,\beta)}(\cos 2\theta_3) \times \tilde{K}_{\alpha,\beta}(\sin \theta_1 \sin \theta_2, \cos \theta_1 \cos \theta_2, \cos \theta_3) (\cos \theta_3)^{2\beta + 1} \sin \theta_3 \, d\theta_3.$$

Askey’s question

Rewrite the Gasper-Watson Jacobi product formula as something similar to the Gegenbauer product formula

$$R_n^{(\alpha,\alpha)}(x) R_n^{(\alpha,\alpha)}(y)$$

$$= \int_{-1}^1 R_n^{(\alpha,\alpha)}(xy + (1 - x^2)^{\frac{1}{2}}(1 - y^2)^{\frac{1}{2}} t) \, d\mu_{\alpha - \frac{1}{2}, \alpha - \frac{1}{2}}(t).$$

For this purpose work with addition formulas and group theory.
The Gegenbauer product formula gives the constant term in the Gegenbauer addition formula:

$$R_n^{(\alpha,\alpha)}(xy+(1-x^2)^{\frac{1}{2}}(1-y^2)^{\frac{1}{2}}t) = \sum_{k=0}^{n} \frac{(-1)^k(-n)_k(n+2\alpha+1)_k}{2^{2k}((\alpha+1)_k^2 h_k^{(\alpha-\frac{1}{2},\alpha-\frac{1}{2})}} \times (1-x^2)^{k/2} R_{n-k}^{(\alpha+k,\alpha+k)}(x) (1-y^2)^{k/2} R_{n-k}^{(\alpha+k,\alpha+k)}(y) R_k^{(\alpha-\frac{1}{2},\alpha-\frac{1}{2})}(t).$$

For $\alpha = \frac{1}{2}(d-3)$ by group theory: $G = O(d) \supset K = O(d-1) \supset M = O(d-2)$, $A = SO(2) \subset G$ commuting with M; $
\phi$ spherical function for (G, K) and ψ_δ for (K, M) (Gelfand pairs):

$$\phi(a_1 k a_2) = \sum_{\delta \in (K/M)^\wedge} \hat{\phi}_{a_1,a_2}(\delta) d_\delta \psi_\delta(k) \ (k \in K, a_1, a_2 \in A).$$

Or as reproducing kernel for spherical harmonics of degree n:

$$R_n^{(\alpha,\alpha)}(\langle x, y \rangle) = \frac{1}{d_n} \sum_{k=1}^{d_n} Y_{n,k}(x) Y_{n,k}(y) \ (x, y \in S^{d-1} = O(d)/O(d-1)).$$
Gangolli: Jacobi polynomials $R_n^{(d-2,0)}$ are spherical functions on complex projective space $P^{d-1}(\mathbb{C}) = U(d)/(U(1) \times U(d-1))$ (a compact Riemannian symmetric space of rank one).

But this is the space of $U(1)$-orbits on $S^{2d-1} = U(d)/U(d-1)$ (unit sphere in \mathbb{C}^d). Functions on $P^{d-1}(\mathbb{C})$ are $U(1)$-invariant functions on S^{2d-1}.

Moreover $(U(d), U(d-1))$ is Gelfand pair with Zernike’s disk polynomials $R_{m,n}^{\alpha}(z)$ ($\alpha = d - 2$) as spherical functions.

$$R_{m,n}^{\alpha}(r e^{i\phi}) := R_{\min(m,n)}^{(\alpha,|m-n|)}(2r^2 - 1) r^{m-n} e^{i(m-n)\phi},$$

$$\int_D R_{m,n}^{\alpha}(x + iy) \overline{R_{k,l}^{\alpha}(x + iy)} (1 - x^2 - y^2)^\alpha \, dx \, dy = 0$$

$$((m, n) \neq (k, l); \text{ } D \text{ unit disk}).$$

Work with complex spherical harmonics on \mathbb{C}^d: refinement of ordinary spherical harmonics on \mathbb{R}^{2d}.

Tom Koornwinder Dick Askey’s positive addition to Amsterdam
The disk polynomials, introduced by the Dutch Nobel prize winner Zernike, find important applications at the Dutch world leading chip machine maker ASML.
R. L. Šapiro (1968), K (1972):

\[R_{m,n}^\alpha(z_1 z_2 + (1 - |z_1|^2)^{\frac{1}{2}} (1 - |z_2|^2)^{\frac{1}{2}} w) = \sum_{k=0}^{m} \sum_{l=0}^{n} c_{m,n,k,l}^\alpha (1 - |z_1|^2)^{\frac{1}{2}(k+l)} R_{m-k,n-l}^{\alpha+k+l}(z_1) \times (1 - |z_2|^2)^{\frac{1}{2}(k+l)} R_{m-k,n-l}^{\alpha+k+l}(z_2) R_{k,l}^{\alpha-1}(w). \]

This yields an addition formula for Jacobi polynomials \(R_n^{(\alpha,0)} \) and next, by differentiation and by analytic continuation in the parameters, an addition formula for Jacobi polynomials \(R_n^{(\alpha,\beta)} \) \((\alpha > \beta > -\frac{1}{2})\). It involves an expansion in terms of orthogonal polynomials in two variables on a parabolic biangle.
Orthogonal polynomials on the parabolic biangle

\[R_{n,k}^{(\alpha,\beta)}(x, y) := R_k^{(\alpha,\beta+n-k+\frac{1}{2})}(2y - 1)y_2^{(n-k)} R_{n-k}^{(\beta,\beta)}(y - \frac{1}{2} x). \]

\[\int_{y=0}^{1} \int_{x=-y^2}^{y^2} R_{n,k}^{(\alpha,\beta)}(x, y) R_{m,l}^{(\alpha,\beta)}(x, y) \times (1 - y)^\alpha (y - x^2)^\beta \, dx \, dy = 0 \quad ((n,k) \neq (m,l)). \]

Parametrize this region by

\[(x, y) = (r \cos \phi, r^2)\]

\((0 \leq r \leq 1, 0 \leq \phi \leq \pi)\).

Put \(d\nu_{\alpha,\beta}(r, \phi) := \frac{r^{2\beta + 2} (1 - r^2)^\alpha (\sin \phi)^{2\beta + 1} \, dr \, d\phi}{\int_{r=0}^{1} \int_{\phi=0}^{\pi} r^{2\beta + 2} (1 - r^2)^\alpha (\sin \phi)^{2\beta + 1} \, dr \, d\phi}. \)
Addition formula for Jacobi polynomials

\[\Lambda(x, y, r, \phi) := \frac{1}{2} (1 + x)(1 + y) + \frac{1}{2} (1 - x)(1 - y) r^2 \]
\[+ (1 - x^2) \frac{1}{2} (1 - y^2) \frac{1}{2} r \cos \phi - 1. \]

\[
R^{(\alpha,\beta)}_n(\Lambda(x, y, r, \phi)) = \sum_{k=0}^{n} \sum_{l=0}^{k} c^{(\alpha,\beta)}_{n,k,l} (1 - x) \frac{1}{2} (k+l) (1 + x) \frac{1}{2} (k-l)
\times R^{(\alpha+k+l,\beta+k-l)}_{n-k}(x) (1 - y) \frac{1}{2} (k+l) (1 + y) \frac{1}{2} (k-l) R^{(\alpha+k+l,\beta+k-l)}_{n-k}(y)
\times R^{(\alpha-\beta-\frac{1}{2},\beta-\frac{1}{2})}_{k,l}(r \cos \phi, r^2).
\]

Constant term in the expansion is the Jacobi product formula

\[
R^{(\alpha,\beta)}_n(x) R^{(\alpha,\beta)}_n(y) = \int_{r=0}^{1} \int_{\phi=0}^{\pi} R^{(\alpha,\beta)}_n(\Lambda(x, y, r, \phi)) \, d\nu_{\alpha-\beta-\frac{1}{2},\beta-\frac{1}{2}}(r, \phi).
\]

Conversely, the product formula implies the addition formula by integration by parts and Rodrigues type formulas.
The Gegenbauer Laplace type integral representation is a degenerate case of the Gegenbauer product formula:

\[R_n^{(\alpha,\alpha)}(x) = \int_{-1}^{1} (x + i(1 - x^2)^{\frac{1}{2}} t)^n d\mu_{\alpha - \frac{1}{2}, \alpha - \frac{1}{2}}(t). \]

Combine this with a fractional integral or degenerate the Jacobi product formula for obtaining

Jacobi Laplace type integral representation:

\[R_n^{(\alpha,\beta)}(x) = \int_{0}^{1} \int_{0}^{\pi} \left(\frac{1}{2}(1 + x) - \frac{1}{2}(1 - x)r^2 + i(1 - x^2)^{\frac{1}{2}} r \cos \phi \right)^n d\nu_{\alpha - \beta - \frac{1}{2}, \beta - \frac{1}{2}}(r, \phi). \]

One can go back and forth between this integral representation and the Jacobi product formula by Bateman’s bilinear sum and its inverse.
Bateman’s bilinear sum and its inverse

\[(x + y)^n R_n^{(\alpha, \beta)} \left(\frac{1 + xy}{x + y} \right) = \sum_{k=0}^{n} a_{n,k} R_k^{(\alpha, \beta)}(x) R_k^{(\alpha, \beta)}(y),\]

where \((x + 1)^n = \sum_{k=0}^{n} a_{n,k} R_k^{(\alpha, \beta)}(x);\)

\[R_n^{(\alpha, \beta)}(x) R_n^{(\alpha, \beta)}(y) = \sum_{k=0}^{n} b_{n,k} (x + y)^k R_k^{(\alpha, \beta)} \left(\frac{1 + xy}{x + y} \right),\]

where \(R_n^{(\alpha, \beta)}(x) = \sum_{k=0}^{n} b_{n,k} (x + 1)^k.\)

These connect

\[(x + y)^n R_n^{(\alpha, \beta)} \left(\frac{1 + xy}{x + y} \right) = \int_{r=0}^{1} \int_{\phi=0}^{\pi} (\Lambda(x, y, r, \phi) + 1)^n d\nu_{\alpha-\frac{1}{2}, \beta-\frac{1}{2}}(r, \phi)\]

and \(R_n^{(\alpha, \beta)}(x) R_n^{(\alpha, \beta)}(y) = \int_{r=0}^{1} \int_{\phi=0}^{\pi} R_n^{(\alpha, \beta)}(\Lambda(x, y, r, \phi)) d\nu_{\alpha-\frac{1}{2}, \beta-\frac{1}{2}}(r, \phi).\)
Hypergroups (Dunkl, Jewett, Spector) axiomatize the structure associated with a positive convolution for an orthogonal system.

Dunkl: Addition formulas for Krawtchouk, Hahn and q-Hahn polynomials from interpretation on finite groups.

D. Stanton: Similarly for q-Krawtchouk polynomials.

K: Addition formula for little q-Legendre polynomials from quantum group interpretation.

Floris: Addition formula for q-disk polynomials in non-commuting variables from quantum group interpretation.

Koelink: addition formulas in many q-cases, both from quantum groups and analytic.

Rahman: analytic proofs of addition formulas in some q-cases.

K & A. Schwartz: positive convolution for orthogonal polynomials on triangle and simplex.
The big open problem: Show the positivity of convolution for Heckman-Opdam Jacobi polynomials.

Partial results by Rösler and by Remling & Rösler.
Transmutation

\[q_n(x) = \int p_n(y) A(x, y) \, d\mu(y) \]

\[A(x, y) = \sum_{n=0}^{\infty} \frac{q_n(x) \, p_n(y)}{h_n} \]
Fractional integrals

Riemann-Liouville:

\[(R_{\mu}f)(x) := \frac{1}{\Gamma(\mu)} \int_0^x f(y) (x - y)^{\mu - 1} \, dy \quad (\text{Re} \, \mu > 0).\]

Weyl:

\[(W_{\mu}f)(x) := \frac{1}{\Gamma(\mu)} \int_x^\infty f(y) (y - x)^{\mu - 1} \, dy \quad (\text{Re} \, \mu > 0).\]

Askey & Fitch (1969) emphasized Bateman’s integral:

\[\frac{x^{c+\mu-1}}{\Gamma(c + \mu)} 2F_1\left(\frac{a, b}{c + \mu}; x\right) = \frac{1}{\Gamma(\mu)} \int_0^x \frac{y^{c-1}}{\Gamma(c)} 2F_1\left(\frac{a, b}{c}; y\right) (x-y)^{\mu - 1} \, dy,\]

\((\text{Re} \, \mu, \text{Re} \, c > 0). \) Hence, for \(\text{Re} \, \mu > 0:\)

\[\frac{(1 - x)^{\alpha+\mu}}{\Gamma(\alpha + \mu + 1)} R_n^{(\alpha+\mu, \beta-\mu)}(x) = \frac{1}{\Gamma(\mu)} \int_x^1 \frac{(1 - y)^\alpha}{\Gamma(\alpha + 1)} R_n^{(\alpha, \beta)}(y) (y-x)^{\mu - 1} \, dy.\]
Bateman’s integral in kernel form:

\[R_n^{(\alpha+\mu, \beta-\mu)}(x) = \int R_n^{(\alpha, \beta)}(y) A(x, y) \, d\mu_{\alpha, \beta}(y), \]

where \[A(x, y) = \frac{2^{\alpha+\beta+1} \Gamma(\alpha + \mu + 1) \Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2) \Gamma(\mu)} \frac{(y - x)^{\mu-1}}{(1 - x)^{\alpha+\mu} (1 + y)^\beta}. \]

Transmutation Theorem. Let \(\{p_n\} \) and \(\{q_n\} \) be complete orthogonal systems with respect to measures \(d\mu \) and \(d\nu \), respectively. Let \(D \) and \(E \) be operators having the \(p_n \) respectively the \(q_n \) as eigenfunctions with the same eigenvalue \(\lambda_n \). Suppose that \(q_n(x) = \int p_n(y) A(x, y) \, d\mu(y) \). Then the operator \(\mathcal{A} \) given by \((\mathcal{A}f)(y) := \int f(x) A(x, y) \, d\nu(x) \) satisfies the transmutation property \(\mathcal{A} \circ E = D \circ \mathcal{A} \).

Hence in case of Bateman’s integral: \(D = D_{\alpha, \beta}, E = D_{\alpha+\mu, \beta-\mu}, \)

where \(D_{\alpha, \beta} R_n^{(\alpha, \beta)} = -n(n + \alpha + \beta + 1) R_n^{(\alpha, \beta)} \).
Feldheim-Vilenkin integral
(not of the desired transmutation form):

\[
\frac{(x - 1)^{\alpha + \mu}}{\Gamma(\alpha + \mu + 1)} x^{\frac{1}{2}n} R_{n}^{(\alpha + \mu, \alpha + \mu)}(x^{-\frac{1}{2}})
\]

\[
= \frac{1}{\Gamma(\mu)} \int_{1}^{x} \frac{(y - 1)^{\alpha}}{\Gamma(\alpha + 1)} y^{\frac{1}{2}n} R_{n}^{(\alpha, \alpha)}(y^{-\frac{1}{2}}) (x - y)^{\mu - 1} \, dy \quad (\mu > 0).
\]

Remark. Both the Bateman and Feldheim-Vilenkin integral can be obtained from spherical harmonics. For Bateman also use that

\[
(x_{1}^{2} + \cdots + x_{q+p}^{2})^{n} R_{n}^{(\frac{1}{2}p-1, \frac{1}{2}q-1)} \left(\left(x_{1}^{2} + \cdots + x_{q}^{2} \right) - \left(x_{q+1}^{2} + \cdots + x_{q+p}^{2} \right) \right) \left(\frac{x_{1}^{2} + \cdots + x_{q+p}^{2}}{x_{1}^{2} + \cdots + x_{q+p}^{2}} \right)
\]

is an \(O(q) \times O(p) \)-invariant homogeneous harmonic polynomial of degree \(2n \) on \(\mathbb{R}^{q+p} \).
Jacobi functions (surveyed by K, 1984). These form a continuous orthogonal system of Gauss hypergeometric functions. They are noncompact analogues of Jacobi polynomials. They have richer transmutation properties.

\[
\phi_{\lambda}^{(\alpha,\beta)}(t) := 2F_1 \left(\begin{array}{c} 1/2(\rho + i\lambda), 1/2(\rho - i\lambda) \\ \alpha + 1 \end{array} ; -\sinh^2 t \right), \quad \rho := \alpha + \beta + 1;
\]

\[
\widehat{f}(\lambda) = \int_0^\infty f(t) \Delta_{\alpha,\beta}(t) \, dt, \quad f(t) = \int_0^\infty \widehat{f}(\lambda) |c_{\alpha,\beta}(\lambda)|^{-2} \, d\lambda.
\]

\[
D_{\alpha,\beta} \phi_{\lambda}^{(\alpha,\beta)} = -\lambda^2 \phi_{\lambda}^{(\alpha,\beta)}; \quad \phi_{\lambda}^{(-1/2,-1/2)}(t) = \cos(\lambda t).
\]

Transmutation:

\[
\phi_{\lambda}^{(\alpha+\mu,\beta\pm\mu)}(t) = \int_0^t \phi_{\lambda}^{(\alpha,\beta)}(s) A(s, t) \Delta_{\alpha,\beta}(s) \, ds
\]

with \(A(s, t)\) positive and elementary if \(\mu > 0\). Relationship with Abel transform on noncompact semisimple Lie groups. Generalization to Chébli-Trimèche hypergroups.
\[p_m(x) p_n(x) = \sum_{k=|m-n|}^{m+n} c_{m,n,k} \frac{p_k(x)}{h_k} \]

\[c_{m,n,k} = \int p_m(x) p_n(x) p_k(x) d\mu(x) \]
Jacobi polynomials:

\[R_{m}^{(\alpha,\beta)}(x) R_{n}^{(\alpha,\beta)}(x) = \sum_{k=|m-n|}^{m+n} c_{m,n,k}^{(\alpha,\beta)} \frac{R_{k}^{(\alpha,\beta)}(x)}{h_{k}^{(\alpha,\beta)}} \]

Theorem (Gasper, 1970) (a) ⇔ (b) ⇔ (c)

(a) \(c_{m,n,k}^{(\alpha,\beta)} \geq 0 \) for all \(m, n, k \).
(b) some quartic polynomial in \(\alpha, \beta \) is nonnegative.
(c) \(\alpha \geq \beta > -1 \) and \(\alpha + \beta > -1 \).

General monic orthogonal polynomials \(p_n \):

\[p_1(x) p_n(x) = p_{n+1}(x) + a_n p_n(x) + b_n p_{n-1}(x), \]

\[p_m(x) p_n(x) = \sum_{k=|m-n|}^{m+n} c_{m,n,k} p_k(x) / h_k. \]

Theorem (Askey, 1970)

\(\forall n \) \(a_n, b_n, a_{n+1} - a_n, b_{n+1} - b_n \geq 0 \) \(\Rightarrow \) \(\forall m, n, k \) \(c_{m,n,k} \geq 0 \).

This covers: If \(\alpha \geq \beta \) and \(\alpha + \beta \geq 1 \) then \(c_{m,n,k}^{(\alpha,\beta)} \geq 0 \).
Remark 1. A function f on a group G is called *positive definite* if for all $x_1, \ldots, x_k \in G$ and all $c_1, \ldots, c_k \in \mathbb{C}$

$$\sum_{i,j=1}^{k} f(x_i x_j^{-1}) c_i \overline{c_j} \geq 0.$$

If (G, K) is a Gelfand pair with G, K compact and with spherical functions ϕ_{λ} then $\phi_{\lambda} \phi_{\mu} = \sum_{\nu} c_{\lambda, \mu, \nu} \phi_{\nu}$ with $c_{\lambda, \mu, \nu} \geq 0$.

Indeed, spherical functions are elementary positive definite functions, a product of positive definite functions is again positive definite, and a K-biinvariant positive definite function is a nonnegative linear combination of spherical functions.

Thus for special parameter values the theorems of Gasper and Askey also follow from group theory.
An addition formula obtained for a spherical function on a
Gelfand pair carries the essential information making it positive
definite and leading to nonnegative linearization coefficients.

This last information is preserved in an addition formula for
other parameter values which do not come from group theory.
The addition formula needs to have certain properties. In
particular, the expansion coefficients in the addition formula
should be nonnegative. Then it implies the nonnegativity of the
linearization coefficients.

This works in the Jacobi case for \(\alpha \geq \beta \geq -\frac{1}{2} \).
An application to Laguerre polynomials

This works also for disk polynomials. If these are rewritten in terms of Jacobi polynomials and next the limit to the Laguerre case is taken then:

\[\int_0^\infty L_\alpha^n(x) L_\alpha^m(\lambda x) L_\alpha^n((1-\lambda)x) x^\alpha e^{-x} \, dx \geq 0 \quad (\alpha \geq 0, \, \lambda \in [0, 1]).\]

By iteration:

\[\int_0^\infty L_\alpha^{n_1}(x) L_\alpha^{n_2}(x) L_\alpha^{n_3}(x) L_\alpha^{n_4}(x) x^\alpha e^{-2x} \, dx > 0 \quad (\alpha > 0).\]

This leads to the four boxes paper by Askey, Ismail & K (1978).
Connection formula

\[q_n(x) = \sum_{k=0}^{n} a_{n,k} \frac{p_k(x)}{h_k} \]

\[a_{n,k} = \int q_n(x) p_k(x) \, d\mu(x) \]
Connection formula (cntd.)

\[
R_n^{(\gamma,\delta)}(x) = \sum_{k=0}^{n} a_{n,k} R_k^{(\alpha,\beta)}(x)/h_k^{(\alpha,\beta)} \implies a_{n,k} = \text{stuff} \times _3F_2(1).
\]

In particular, \(a_{n,k}\) is elementary and nonnegative in the cases

\[
R_n^{(\gamma,\gamma)}(x) = \sum_{k=0}^{n} a_{n,k} R_k^{(\alpha,\alpha)}(x)/h_k^{(\alpha,\alpha)} \quad (\gamma > \alpha > -1),
\]

\[
R_n^{(\gamma,\beta)}(x) = \sum_{k=0}^{n} a_{n,k} R_k^{(\alpha,\beta)}(x)/h_k^{(\alpha,\beta)} \quad (\gamma > \alpha > -1).
\]

Askey & Gasper (1971) give sufficient conditions for nonnegativity of \(a_{n,k} = a_{n,k}^{(\gamma,\delta),(\alpha,\beta)}\). For given \((\alpha, \beta)\) this includes an infinite region in the \((\gamma, \delta)\) plane bounded by three lines with \((\gamma, \delta) = (2\alpha + 1, 2\beta + 1)\) as one of the vertices.

Askey (1968): Certain of these positivity cases from isometric embeddings of projective spaces.
Nevai (1979): Connection coefficients for p_n in terms of Chebyshev polynomials T_k are limits of linearization coefficients for p_n.

Further work by Szwarc.

It seems that certain conditions on the coefficients in the three-term recurrence relation can identify a class of orthogonal polynomials giving rise to the dual case of the Chébli-Trimèche hypergroups.
De Branges’ proof of the Bieberbach conjecture

Bieberbach (1916) conjectured that for a univalent function $F(z) = 1 + \sum_{n=2}^{\infty} a_n z^n$ on the unit disk there holds $|a_n| \leq n$. This was finally proved by Louis de Branges in Acta Math. (1985). During the preparation the last obstacle had been a proof of the inequality

$$_3 F_2 \left(\begin{array}{c} -n, n + \alpha + 2, \frac{1}{2} (\alpha + 1) \\ \alpha + 1, \frac{1}{2} (\alpha + 3) \end{array} ; x \right) \geq 0$$

$(0 \leq x \leq 1, \ n = 0, 1, 2, \ldots, \ \alpha = 2, 4, 6, \ldots)$.

He had consulted Walter Gautschi, and Walter had called Dick Askey, who remembered that the inequality (for $\alpha \geq -2$) was in his paper with Gasper: *Positive Jacobi polynomial sums, II*, Amer. J. Math. (1976), and earlier in G. Gasper, *Positivity and special functions*, in: *Theory and application of special functions*, Academic Press, 1975.
Gasper’s first proof of the inequality

Askey was interested when the following sum is nonnegative:

$$
\sum_{k=0}^{n} \frac{(\lambda + 1)_{n-k}}{(n-k)!} \frac{(\lambda + 1)_k}{k!} \frac{P_k^{(\alpha,\beta)}(x)}{P_k^{(\beta,\alpha)}(1)} \quad (-1 \leq x \leq 1).
$$

Gasper observed that for $\lambda = \beta = 0$

$$
\sum_{k=0}^{n} P_k^{(\alpha,0)}(1 - 2x) = \frac{(\alpha + 2)n}{n!} 3F_2\left(\frac{-n, n + \alpha + 2, \frac{1}{2}(\alpha + 1)}{\frac{1}{2}(\alpha + 3), \alpha + 1} ; x \right),
$$

where the $3F_2$ is close to Clausen's case

$$
3F_2\left(\frac{-n, n + \alpha + 1, \frac{1}{2}(\alpha + 1)}{\frac{1}{2}(\alpha + 2), \alpha + 1} ; x \right) = \left(2F_1\left(\frac{-\frac{1}{2}n, \frac{1}{2}(n + \alpha + 1)}{\frac{1}{2}(\alpha + 2)} ; x \right)\right)^2.
$$
In fact, Gasper could expand the \(\mathbf{3}_F_2 \) as a sum of Clausen \(\mathbf{3}_F_2 \)'s with nonnegative coefficients:

\[
\mathbf{3}_F_2\left(\begin{array}{c}
-n, n + \alpha + 2, \frac{1}{2}(\alpha + 1) \\
\frac{1}{2}(\alpha + 3), \alpha + 1
\end{array}; x \right)
\]

\[
= \sum_{j=0}^{[\frac{1}{2}]j} c_{n,j}^\alpha \mathbf{3}_F_2\left(\begin{array}{c}
-n + 2j, n - 2j + \alpha + 1, \frac{1}{2}(\alpha + 1) \\
\frac{1}{2}(\alpha + 2), \alpha + 1
\end{array}; x \right).
\]

by applying the operator \(f \mapsto \int_0^1 (t(1 - t))^{\frac{1}{2}(\alpha-1)} f(\cdot, t) \, dt \) to

\[
\mathbf{2}_F_1\left(\begin{array}{c}
-n, n + \alpha + 2, \\
\frac{1}{2}(\alpha + 3)
\end{array}; x \right) = \sum_{j=0}^{[\frac{1}{2}]j} c_{n,j}^\alpha \mathbf{2}_F_1\left(\begin{array}{c}
-n + 2j, n - 2j + \alpha + 1, \\
\frac{1}{2}(\alpha + 2)
\end{array}; x \right),
\]

i.e., to

\[
R_{\frac{1}{2}(\alpha+1), \frac{1}{2}(\alpha+1)}(1 - 2x) = \sum_{j=0}^{[\frac{1}{2}n]} c_{n,j}^\alpha R_{n-2j}^{(\frac{1}{2}\alpha, \frac{1}{2}\alpha)}(1 - 2x)
\]

(connection formula for Gegenbauer polynomials).
Thank you, Dick,

and happy years to come with Liz, children and grandchildren.