SOME PROBLEMS

DENNIS STANTON

Contents

1. Alternating sign matrices 2
2. Eigenvalues of graphs 4
3. Ranks and Cranks 4
4. The Borwein and Bressoud conjectures 6
5. Assorted q-binomial questions 8
6. Finite fields 10
7. Rogers-Ramanujan identities 12
8. Other questions 13
References 15

Some of these problems do not originate with me.
1. Alternating sign matrices

An $n \times n$ alternating sign matrix A is an $n \times n$ matrix, with entries $0, \pm 1$, whose row and column sums are 1, and non-zero entries in each row and column alternate in sign, see [13].

The number of $n \times n$ alternating sign matrices is known [48] to be

$$ASM(n) = \prod_{k=0}^{n-1} \frac{(3k + 1)!}{(n + k)!}.$$

This sequence starts $1, 2, 7, 42, 429, 7436, \cdots$.

It is known that $ASM(n)$ is equal to two other numbers

1. the number of totally symmetric self-complementary plane partitions inside a $2n \times 2n \times 2n$ box, $TSSCPP(n)$,
2. the number of descending plane partitions whose largest part is at most n, $DPP(n)$.

A descending plane partition (DPP) [3] is a column strict tableau of shifted shape, decreasing along rows, and strictly decreasing down columns, such that the lead element of a row is greater than the number of elements in a that row. Here are the 7 descending plane partitions counted by $DPP(3)$

$$\emptyset, 2, 3, 3 2, 3 1, 3 3, 3 3 2.$$

Open Problem 1.1. Find a bijection between the elements counted by $ASM(n)$ and those counted by $TSSCPP(n)$ or $DPP(n)$.

It is not even known how to do this via the involution principle [22].

It is known [42] that the values of n for which $ASM(n)$ is odd are

$$n = \sum_{t/2 \geq k \geq 0} 2^{t-2k} + \{1 \text{ if } t \text{ is odd}\}.$$

The first few values are $1, 3, 5, 11, 21, 43, 85, \cdots$.

Open Problem 1.2. Find a Franklin type involution which proves that $ASM(n)$ is even when n avoids the above sequence.

Open Problem 1.3. Find a statistic on a subset of permutations, $T_n \subset S_n$, $stat(w)$, such that

$$ASM(n) = \sum_{w \in T_n} 2^{stat(w)}.$$

Andrews conjectured [3], and Mills, Robbins, and Rumsey proved [28], that the generating function for $DPP(n)$ is

$$DPP(n, q) = \prod_{k=0}^{n-1} \frac{(3k + 1)!_q}{(n + k)!_q},$$

for example

$$DPP(3, q) = \frac{7!_q * 4!_q}{3!_q * 4!_q * 5!_q} = \frac{7_q * 6_q}{2_q * 3_q} = (1 - q + q^2)(1 + q + q^2 + q^3 + q^4 + q^5 + q^6) = 1 + q^2 + q^3 + q^4 + q^5 + q^6 + q^8.$$

Open Problem 1.4. Find a statistic on $ASM(n)$ whose generating function is $DPP(n,q)$.

It is easy to see that
\[
DPP(\infty, q) = \lim_{n \to \infty} DPP(n, q) = \frac{1}{(1 - q^2)(1 - q^3)(1 - q^4)(1 - q^5)^2(1 - q^6)^2 \cdots}
\]
\[
= \prod_{k=1}^{\infty} \frac{(1 - q^{3k-1})^{-k}(1 - q^{3k})^{-k}(1 - q^{3k+1})^{-k}}{1 - q^{k+1}^{-1}}.
\]

This infinite product may be rewritten using Cauchy’s formula for Schur functions as
\[
DPP(\infty, q) = \sum_{\lambda} s_{\lambda}(q^2, q^3, q^4, \cdots) s_{\lambda}(1, q^3, q^6, \cdots).
\]

Open Problem 1.5. Find a weight preserving bijection between $DPP(\infty)$ and pairs of column strict tableaux of the same shape which proves (1).

Open Problem 1.6. Find a weight preserving bijection between $ASM(\infty)$ and pairs of column strict tableaux of the same shape which proves (1). Restrict this bijection to find a bijection between $DPP(n)$ and $ASM(n)$, also a q-statistic for $ASM(n)$.

Let G be the cyclic group of order 4 which acts by rotations on the set of $n \times n$ alternating sign matrices. It is known [36] that $(ASM(n), DPP(q), G)$ is an example of the cyclic sieving phenomenon. Thus $DPP(i)$ is the number of $n \times n$ alternating sign matrices fixed under a 90 degree rotation.

Open Problem 1.7. Find an insightful (non computational) proof that $(ASM(n), DPP(n,q), G)$ is an example of the CSP.

Tom Sundquist [43] defined, for positive integers n and p,
\[
A(n, p; q) = \prod_{k=0}^{n-1} \frac{(np + k)! (p + 1)!}{q^{(p + 1)k} ((p + 1)k)! q^{(p + 1)! q^{(p + 1)k}^{-1}}}
\]
\[
= q^{-P} s_{(p \delta_n)}(1, q, \cdots, q^{np-1}) s_{p \delta_n}(1, q, \cdots, q^{n-1}).
\]

where
\[
\delta_n = (n - 1, n - 2, \cdots, 0), \quad P = \binom{p}{2} \sum_{i=1}^{n-1} i^2.
\]

Sundquist proved this was always a polynomial in q with integer coefficients, but did not prove positivity.

Open Problem 1.8. Prove $A(n, p; q) \in \mathbb{N}[q]$ if n and p are positive integers and what does $A(n, p; q)$ count?
Note that the DPP and Catalan are both special cases, so positivity is known.
\[A(n, 2; q) = DPP(n, q) \]
\[A(2, p; q) = \frac{1}{[p+1]q} \left[\begin{array}{c} 2p \\ p \end{array} \right] = Cat_p(q) \]

Sundquist also gives a combinatorial interpretation for $A(\infty, p; q)$. For $p = 2$, Jessica Striker has noted that this result should be the following.

Proposition 1.9. $DPP(\infty, q)$ is the generating function for all plane partitions T of the following type. For any i, the elements of the i^{th} column are $1, 2, \ldots, i - 1$ or $i + 1, i + 4, i + 7, \ldots$.

Open Problem 1.10. What restriction on the plane partitions T in Proposition 1.9 allows the generating function $DPP(n, q)$? Find a bijection between this class and any of the three known ASM(n)-equivalent objects.

2. Eigenvalues of Graphs

Let G be a finite simple graph with n vertices $\{v_1, \cdots, v_n\}$. The Laplacian matrix $L(G)$ is an $n \times n$ matrix whose entries are

\[L(G)_{ij} = \begin{cases}
\text{deg}(v_i) & \text{if } i = j, \\
-1 & \text{if } i \neq j \text{ and } v_i - v_j \text{ is an edge}, \\
0 & \text{if } i \neq j \text{ and } v_i - v_j \text{ is not an edge}
\end{cases} \]

It is known that $L(G)$ is singular, diagonalizable, and positive semidefinite. So one eigenvalue of $L(G)$ is 0, and let $\lambda_1, \cdots, \lambda_{n-1}$ be the remaining non-negative eigenvalues. It is known that

\[\lambda_1 \ast \cdots \ast \lambda_{n-1} = e_{n-1}(\lambda_1, \cdots, \lambda_{n-1}) \]

is the number of rooted spanning trees of G. Moreover the combinatorial interpretation of the coefficients of the characteristic polynomial of $L(G)$ shows that

\[e_{n-k}(\lambda_1, \cdots, \lambda_{n-1}) \]

is the number of spanning forests of G consisting of k rooted trees.

Open Problem 2.1. What is the combinatorial interpretation of the Schur function

\[s_\mu(\lambda_1, \cdots, \lambda_{n-1})? \]

This is a non-negative integer, because of the Jacobi-Trudi identity and the non-negativity of the eigenvalues.

3. Ranks and Cranks

The Dyson rank [15] of an integer partition $\lambda = (\lambda_1, \lambda_2, \cdots)$

\[\text{rank}(\lambda) = \lambda_1 - \lambda_1' \]

(largest part - number of parts) proves the Ramanujan congruences

\[p(5n + 4) \equiv 0 \mod 5, \quad p(7n + 5) \equiv 0 \mod 7 \]

by considering the rank modulo 5 and 7. No one knows bijections for these rank classes.
The generating function for the rank polynomial is known to be
\[
\sum_{n=0}^{\infty} \text{rank}_n(z) q^n = \sum_{n=0}^{\infty} \frac{q^n}{(z; q)_n(q/z; q)_n}
\]

The rank generating function \(\text{rank}_{5n+4}(z) \) for partitions of \(5n+4 \) does have an explicit factor of 5, but not positively. For example
\[
\text{rank}_4(z) = 1 + z - 3 + z^2 - z^3 + z^4 = (1 + z + z^2 + z^3 + z^4) * (1 - z + z^2)/z^3,
\]
\[
\text{rank}_{14}(z) = (1 + z + z^2 + z^3 + z^4) * p(z)/z^{13}
\]
where \(p(z) \) is an irreducible polynomial of degree 22 which has negative coefficients.

For an explicit 5-cycle which would be a rank class bijection, one would expect the factor \(1 + z + z^2 + z^3 + z^4 \) times a positive Laurent polynomial in \(z \). Here is a conjectured modification that does this.

Definition 3.1. For \(n \geq 2 \) let
\[
M_{\text{rank}}_n(z) = \text{rank}_n(z) + (z^{n-2} - z^{n-1} + z^{2-n} - z^{1-n}).
\]

Conjecture 3.2. For \(n \geq 0 \),
\[
M_{\text{rank}}_{5n+4}(z)/(1 + z + z^2 + z^3 + z^4)
\]
is a non-negative Laurent polynomial in \(z \). Also
\[
M_{\text{rank}}_{7n+5}(z)/(1 + z + z^2 + z^3 + z^4 + z^5 + z^6)
\]
is a non-negative Laurent polynomial in \(z \).

This conjecture says that the rank definition only needs to be changed for \(\lambda = n, 1^n \) to have the “correct” symmetry. I do not know a modification which will also work modulo 11. Frank Garvan has verified Conjecture 3.2 for \(5n + 4 \leq 1000 \) and \(7n + 5 \leq 1000 \).

The Andrew-Garvan [5] crank of a partition \(\lambda \) is
\[
\text{AGcrank}(\lambda) = \begin{cases}
\lambda_1 & \text{if } \lambda \text{ has no 1's} \\
\mu(\lambda) - (#1's \text{ in } \lambda) & \text{if } \lambda \text{ has at least one 1,}
\end{cases}
\]
where \(\mu(\lambda) \) is the number of parts of \(\lambda \) which are greater than the number of 1’s of \(\lambda \). For example
\[
\text{AGcrank}(1111) = 0 - 4, \text{ AGcrank}(211) = 0 - 2, \text{ AGcrank}(22) = 2 - 0 \\
\text{AGcrank}(31) = 1 - 1, \text{ AGcrank}(4) = 4 - 0
\]

The generating function of the AGcrank over all partitions of \(n \) is \(\text{AGcrank}_n(z) \).

For example
\[
\text{AGcrank}_4(z) = z^{-4} + z^{-2} + z^2 + z^0 + z^4.
\]

The generating function for the AGcrank polynomial is known to be (after modifying \(\text{AGcrank}_4(z) \))
\[
\sum_{n=0}^{\infty} \text{AGcrank}_n(z) q^n = \frac{(q; q)_\infty}{(zq; q)_\infty(q/z; q)_\infty}
\]

Open Problem 3.3. Show
\[
\text{AGcrank}_{5n+4}(z) = (1 + z^2 + z^4 + z^6 + z^8) * (a \text{ positive Laurent polynomial in } z).
\]
Frank Garvan has verified Open Problem 3.3 for $5n + 4 \leq 1000$.
Ramanujan factored the first 21 AGcrank polynomials, $\lambda_n = AGcrank_n(a)$, see the paper of Berndt, Chan, Chan and Liaw [9, p. 12]. Ramanujan found the factor $\rho_5 = z^4 + z^{-4} + z^2 + z^{-2} + 1$ for $n = 4, 9, 14, 19$ but the other factors did not always have positive coefficients. For example Ramanujan had
\[
AGcrank_{14}(z) = (z^4 + z^2 + 1 + z^{-2} + z^{-4}) * \rho_9 * (a_5 - a_3 + a_1 + 1),
\]
where
\[
\rho_9 * (a_5 - a_3 + a_1 + 1) = (z^2 + z^{-2} + 1)(z^3 + z^{-3} + 1) * (z^5 + z^{-5} - z^3 - z^{-3} + z + z^{-1} + 1)
\]
\[
= 3 + 1/z^{10} + 1/z^7 + 1/z^6 + 1/z^5 + 2/z^4 + 2/z^3 + 2/z^2 + 2/z
\]
\[+ 2z + 2z^2 + 2z^3 + 2z^4 + z^5 + z^6 + z^7 + z^{10}.
\]

A modified version of the AGcrank works for modulo 5, 7, and 11, with only the values at partitions $n, 1^n$ changed.

Definition 3.4. For $n \geq 2$ let
\[
MAGcrank_{n,a}(z) = AGcrank_n(z) + (z^{n-a} - z^n + z^{a-n} - z^{-n}).
\]

Conjecture 3.5. The following are non-negative Laurent polynomials in z
\[
MAGcrank_{5n+4,5}(z)/(1 + z + z^2 + z^3 + z^4),
MAGcrank_{7n+5,7}(z)/(1 + z + z^2 + z^3 + z^4 + z^5 + z^6),
MAGcrank_{11n+6,11}(z)/(1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8 + z^9 + z^{10}).
\]

Frank Garvan has verified Conjecture 3.5 for $tn + r \leq 1000$.

The 5corecrank (see [23, 1990]) may be defined from the integer parameters $(a_0, a_1, a_2, a_3, a_4)$ involved in the 5-core of a partition λ. Its generating function for partitions of $5n + 4$ is
\[
\sum_{n=0}^{\infty} q^{n+1} \sum_{\lambda \vdash 5n+4} z^{5\text{corecrank}(\lambda)} = \frac{1}{(q; q)_\infty} \sum_{\vec{a} \in \mathbb{Z}^4} q^{Q(a)} z^{\sum_{i=1}^{4} i a_i},
\]
where
\[
Q(a) = \sum_{i=0}^{4} a_i^2 - \sum_{i=0}^{4} a_ia_{i+1}, \quad a_5 = a_0.
\]

Frank Garvan also noted the following version of the previous conjectures holds for the 5corecrank for $n \leq 100$, and $n \leq 8$, see [7]. Ken Ono [33], in work with Bringmann and Rolen, has established the first statement.

Conjecture 3.6. The following are non-negative Laurent polynomial in z
\[
5\text{corecrank}_{5n+4}(z)/(1 + z + z^2 + z^3 + z^4),
5\text{corecrank}_{5n+4,j}(z)/(1 + z + z^2 + z^3 + z^4) \quad \text{when restricted to } BGcrank = j.
\]

4. The Borwein and Bressoud conjectures

The Borwein conjecture ([1], proven by Chen Wang [44] in 2019, see also [10]) is the following positivity conjecture.
Let
\[
(q; q^3)_n(q^2; q^3)_n = A_n(q^3) - qB_n(q^3) - q^2 C_n(q^3)
\]
for polynomials $A_n(q), B_n(q), C_n(q)$. Then $A_n(q), B_n(q), C_n(q)$ have non-negative coefficients.

There are explicit alternating forms for these polynomials

$$A_n(q) = \sum_k \left[\frac{2n}{n - 3k} \right]_q (-1)^k q^{(9k^2 - k)/2}$$

$$B_n(q) = \sum_k \left[\frac{2n}{n - 3k - 1} \right]_q (-1)^k q^{(9k^2 + 5k)/2}$$

$$C_n(q) = \sum_k \left[\frac{2n}{n - 3k + 1} \right]_q (-1)^k q^{(9k^2 - 7k)/2}$$

Note that $A_n(1) = 2 \cdot 3^{n-1}, B_n(1) = 3^{n-1} = C_n(1)$. The $n = \infty$ case follows from the Jacobi triple product

$$A_\infty(q) = \frac{(q^4; q^3; q^9)_\infty}{(q; q)_\infty},$$

$$B_\infty(q) = \frac{(q^7; q^2; q^9)_\infty}{(q; q)_\infty},$$

$$C_\infty(q) = \frac{(q^8; q^1; q^9)_\infty}{(q; q)_\infty}.$$

Open Problem 4.1. Identify finite subsets of partitions whose parts are restricted modulo 9 via (2) whose generating functions are $A_n(q), B_n(q), C_n(q)$.

It is known that the hook difference polynomials do have positive coefficients and count certain partitions which lie inside a rectangle (see [4]).

Let $N, M, i, K, \alpha, \beta$ be positive integers such that

$$\alpha + \beta < K, \quad -i + \beta \leq N - M \leq K - i - \alpha.$$

Then the hook difference polynomials are

$$D_{K,i}(N, M, \alpha, \beta) = \sum_\lambda q^{\lambda(K\lambda + i)(\alpha + \beta) - K\beta\lambda} \left[\frac{N + M}{N - K\lambda} \right]_q$$

$$- \sum_\lambda q^{\lambda(K\lambda - i)(\alpha + \beta) - K\beta\lambda + \beta i} \left[\frac{N + M}{N - K\lambda + i} \right]_q$$

A special case is

$$D_{2k,k}(N, N, \alpha, \beta) = \sum_s (-1)^s \left[\frac{2N}{N - ks} \right]_q q^{ks(s+1)(\alpha + \beta)/2 - \beta ks}$$

for

$$\alpha + \beta < 2k, \quad -k + \beta \leq 0 \leq k - \alpha.$$

The Borwein polynomial $A_n(q) = D_{6,3}(N, N, 4/3, 5/3)$.

Open Problem 4.2. What is the combinatorial meaning of the rational parameters $\alpha = 4/3, \beta = 5/3$?

Bressoud [11] investigated this question and formulated a more general conjecture for rational parameters (his Conjecture 6).
Conjecture 4.3. Let α and β be positive rational numbers, and let $k > 1$ be an integer such that ak and βk are integers. If
\[
1 \leq \alpha + \beta \leq 2k - 1, \quad (\text{with strict inequalities for } k = 2)
\]
\[\beta \leq n - m \leq k - \alpha \]
then $D_{2k,k}(n, m, \alpha, \beta)$ has non-negative coefficients.

There is also a corresponding Borwein type conjecture for special cases of these polynomials (see [11, Conjecture 5]). If k is odd, $1 < a < k/2$, let
\[
(q^a; q^k)_m(q^{k-a}; q^k)_n = \sum_{\nu=(1-k)/2}^{(k-1)/2} (-1)^\nu q^{k(\nu^2 + \nu)/2 - \nu} F_\nu(q^k)
\]
then
\[
F_\nu(q) = G_{2k,k}(n, m, \nu + (k + 1)/2 - a/k, -\nu + (k - 1)/2 + a/k).
\]

Conjecture 4.4. If a is relatively prime to k and $m = n$, then the coefficients of $F_\nu(q)$ are non-negative.

The Borwein conjecture is the case $k = 3$, $a = 1$.

Conjecture 4.4 says that the coefficients of $q^p, p \equiv \nu \mod k$ in
\[
(q^a; q^k)_n(q^{k-a}; q^k)_n
\]
all have sign $(-1)^\nu$.

The refined Borwein conjecture [1, (1.5)] for the coefficients of z^t in
\[
(q, q^2; q^3)_m(zq, zq^2; q^3)_n
\]
has been proven false in general by Yee, see [46].

If $q = 1$ there is polynomial version [26] which replaces the sign $(-1)^s$ in (3) by a Chebychev polynomial.

Theorem 4.5. If $|N - M| \leq k$, then
\[
\sum_s \binom{N + M}{M - ks} \cos(sx)
\]
is a positive polynomial in $1 + \cos(x)$, and thus is positive for a real value of x.

Open Problem 4.6. Find a q-version of this result which contains Bressoud’s conjecture. See [26].

5. Assorted q-binomial questions

In [39, Theorem 1] it was proven that
\[
\frac{1}{n!_q} = \frac{(1 - q)^n}{(q; q)_n}
\]
has alternating power series coefficients.

Open Problem 5.1. What is the algebraic meaning in terms of Koszul duality of this result?
SOME PROBLEMS

A generalization [39, Theorem 2] was given for the alternating behavior of

\[(5) \quad (1 - q)^n \binom{n + k}{k}_q\]

where \(nk\) is even.

Open Problem 5.2. What is the algebraic meaning in terms of Koszul duality of this result?

Open Problem 5.3. Find sign-reversing involutions which prove (4) and (5) have alternating coefficients.

In [20] a polynomial expansion for the \(q\)-binomial coefficient is given

\[\binom{n}{k}_q = \sum_{\omega \in \Omega_{n,k}} q^{s(\omega)} (1 + q)^{t(\omega)}.\]

The set \(\Omega_{n,k}\) is a subset of the set of all words with \(k\) 1’s and \(n - k\) 0’s.

Open Problem 5.4. Is there an apriori definition of \(\Omega_{n,k}, s(\omega), t(\omega)\) using coset representatives or root systems?

Franklin [2, Ex. 13-14, p. 50] had a generalization of the \(q\)-binomial coefficient

\[\binom{m+k}{k}_q\]

being the generating function for partitions with at most \(k\) parts, largest part at most \(m\).

Theorem 5.5. (Franklin) Let \(1 \leq j \leq k\). The generating function for all partitions \(\lambda\) with at most \(k\) parts such that \(\lambda_1 - \lambda_{j+1} \leq m\) is

\[\frac{(1 - q^{m+1}) \cdots (1 - q^{m+j})}{(1 - q) \cdots (1 - q^k)}.\]

This has an inductive proof by a sign-reversing involution.

Open Problem 5.6. What is the analogue of Franklin’s Theorem 5.5 for the MacMahon box theorem? Is there a result for each symmetry class of plane partitions?

The KOH identity [25, 47] for the \(q\)-binomial coefficient

\[(6) \quad \binom{n + k}{k}_q = \sum_{\lambda \vdash k} q^{2n(\lambda)} \prod_{i=0}^{k-1} \left[\frac{(k - i)n - 2i + d_{k-i} + \sum_{j=0}^{i-1} 2(i - j)d_{k-j}}{d_{k-i}} \right]_q\]

where \(\lambda = 1^{d_1}2^{d_2} \cdots\) is a partition of \(k\), proves unimodality of the \(q\)-binomial coefficient as a polynomial in \(q\). Stanley [38] proved a stronger theorem for Weyl groups, which implies that \((-q; q)_n\) is unimodal polynomial in \(q\).

Open Problem 5.7. Find a KOH-type identity for \((-q; q)_n = \prod_{i=1}^{n}(1 + q^i)\).

The KOH identity was combinatorially proved under the assumption that

\[\binom{N}{s}_q = 0\]
if \(s \geq 0 \) and \(N < 0 \). Macdonald [32] proved a version, called MACKOH, which assumes the definition

\[
\left[\frac{N}{s} \right]_q = \frac{(1-q^N)(1-q^{N-1})\cdots(1-q^{N-s+1})}{(1-q)(1-q^2)\cdots(1-q^s)}
\]

for all \(s \geq 0 \), and all \(N \). In this version, both sides of (6) are polynomials in \(x = q^n \) of degree \(k \), true for infinitely many \(x \). Thus (KOH) implies (MACKOH).

Open Problem 5.8. Find an involution which proves that the (MACKOH) implies the (KOH).

For example, if \(k = 4 \), then the KOH identity is

\[
\binom{n+4}{4} = \binom{4n+1}{1}_q + q^2 \binom{3n-1}{1}_q \binom{n-1}{1}_q + q^3 \binom{2n-2}{1}_q + q^4 \binom{n-2}{1}_q + q^6 \binom{n-2}{2}_q + q^8 \binom{n-2}{4}_q.
\]

What is the involution, assuming (MACKOH), which shows that terms with negative parameters may be dropped?

This appears to be related to the \(M = N \) conjecture in quantum integrable systems [17, Conj. 2.8].

Gessel [24] defined a collection of Super Catalan numbers which are integers

\[
T(m,n) = \frac{(2n)!(2m)!}{m!n!(m+n)!}.
\]

Combinatorial interpretations have been given for \(m \) small or \(n - m \) small, and also signed versions for all \(m, n \) [6].

Sundquist generalized this result by considering

\[
T(a_1, a_2, \cdots, a_k; q) = \frac{\prod_{i=1}^{k} (2^{k-1}a_i)_q}{\prod_{S \subseteq [k]} a_S^q},
\]

where

\[
a_S = \sum_{s \in S} a_s
\]

and the product in the denominator does not include \(S = [k] \). The Super Catalan numbers are the case \(k = 2, a_1 = m, a_2 = n \). He proved \(T(a_1, a_2, \cdots, a_k; q) \) is a polynomial in \(q \). The positivity for the \(q \)-super Catalan numbers was established in [45, Prop. 2].

Open Problem 5.9. Prove \(T(a_1, a_2, \cdots, a_k; q) \in \mathbb{N}[q] \) and find a combinatorial interpretation for this generating function. Is there a result for other posets?

6. Finite fields

If the cyclic group of order \(n \) acts on the set of \(k \)-element subsets of \([n] \), the number of orbits is of size \(e \) is

\[
O(n,k,e) = \frac{1}{e} \sum_{d|s|\operatorname{GCD}(k,n)} \mu\left(\frac{n}{d}\right) \binom{n/s}{k/s}.
\]
A q-version of this result was given by Drudge [14], [35, Prop. 9.2]. The number of orbits of the Singer cycle c in $GL_n(\mathbb{F}_q)$ on the k-dimensional subspaces of size $[e]_q$, $n = de$ is

$$O(n, k, e; q) = \frac{1}{[e]_q d |GCD(k, n)}} \sum \mu(s) \left[\frac{n}{s}\right]_{q, n}.$$

The special case $e = n$ is attractive

$$O(n, k, n; q) = \frac{1}{[n]_q} \sum s |GCD(k, n)} \mu(s) \left[\frac{n}{s}\right]_{n, q}.$$

In [35, Conj. 10.3] the polynomiality in q of this number is proven, but not positivity.

Open Problem 6.1. Prove $O(n, k, n; q) \in \mathbb{N}[q]$ and find a combinatorial interpretation for this generating function.

When $GCD(n, k) = 1$ this is

$$O(n, k, n; q) = \frac{1}{[n]_q} \left[\frac{n}{k}\right]_q$$

and this has a combinatorial interpretation.

In [30, Theorem 1.1], using the complex irreducible characters of $GL_n(\mathbb{F}_q)$, the number of factorizations of the Singer cycle c into n reflections was found to be

$$(q^n - 1)^{n - 1}.$$

No simple proof is known. It is the q-version of the number of factorizations of an n-cycle into transpositions being $n^{n - 2}$.

Open Problem 6.2. Find a direct bijection for this result.

More generally [30, Theorem 1.2], the generating function for the number of factorizations, $t(c, \ell)$, of the Singer cycle c into ℓ reflections is

$$\sum_{\ell=n}^{\infty} t(c, \ell) x^\ell = (q^n - 1)^{n - 1} \frac{x^n (1 + x[n] q (1 + q^k - q^{k+1}))^{-1}}{1 + x[n] q}.$$

Open Problem 6.3. Find an apriori reason for the rationality of this generating function. Do the zeros in the denominator have geometric meaning?

Let $S = \mathbb{F}_q[x_1, \ldots, x_n]$ be the polynomial ring on which $GL_n(\mathbb{F}_q)$ naturally acts. Let

$$Q_m = S/<x_1^m, \ldots, x_n^m>.$$

on which $GL_n(\mathbb{F}_q)$ also acts. Then [31, Conj. 1.2]

Conjecture 6.4. The Hilbert series for the $GL_n(\mathbb{F}_q)$ fixed subalgebra of Q is

$$\sum_{k=0}^{\min(m, n)} t^{(n-k)(q^m - q^k)} \left[\frac{m}{k}\right]_{q, t}.$$

In [34] and [40] some results are given for a theory of partitions and plane partitions whose parts sizes are $[n]_q$ instead of integers $n.$

Open Problem 6.5. Can these results be extended to other classical partition results?
7. Rogers-Ramanujan identities

There are known polynomial identities which generalize the Rogers-Ramanujan (RR) identities

\[\sum_{k=0}^{\infty} \frac{q^{k^2}}{(q; q)_k} = \frac{1}{(q, q^4; q^2)_\infty}, \quad \sum_{k=0}^{\infty} \frac{q^{k^2+k}}{(q; q)_k} = \frac{1}{(q^2, q^3; q^5)_\infty}. \]

Schur knew that

\[D_n(q) = \sum_{k=0}^{(n+1)/2} q^{k^2} \left[\begin{array}{c} n + 1 - k \\ k \end{array} \right]_q, \quad E_n(q) = \sum_{k=0}^{n/2} q^{k^2+k} \left[\begin{array}{c} n - k \\ k \end{array} \right]_q \]

had alternative representations

\[D_{n-1}(q) = \sum_j (-1)^j q^{j(5j+1)/2} \left[\begin{array}{c} n \\ (n+5j+1)/2 \end{array} \right]_q, \]
\[E_n(q) = \sum_j (-1)^j q^{j(5j+3)/2} \left[\begin{array}{c} n + 1 \\ (n+5j+3)/2 \end{array} \right]_q. \]

(Note that both satisfy the q-Fibonacci recurrence $p_n = p_{n-1} + q^n p_{n-2}$.) Using the Jacobi-Triple-Product on $D_\infty(q)$, $E_\infty(q)$, one obtains the RR identities. Easily (7) shows that $D_n(q)$ is the generating function for all partitions λ whose difference of parts is at least 2, and $\lambda_1 \leq n$.

Open Problem 7.1. Which subset of partitions whose parts are restricted modulo 5 do the polynomials in (7) generate?

Bressoud [12, (1.1), (1.3)], [37, Sec. 6] gave another polynomial identity

\[\sum_{j=0}^{n} q^{j^2} \left[\begin{array}{c} n \\ j \end{array} \right]_q = \sum_{j=-\infty}^{\infty} (-1)^j q^{j(5j+1)/2} \left[\begin{array}{c} 2n \\ n+2j \end{array} \right]_q \]
\[\sum_{j=0}^{n} q^{j^2+j} \left[\begin{array}{c} n \\ j \end{array} \right]_q = \sum_{j=-\infty}^{\infty} (-1)^j q^{j(5j+3)/2} \left[\begin{array}{c} 2n + 1 \\ n+2j+1 \end{array} \right]_q \]

This time the left side generates difference two partitions λ with $\text{rank}(\lambda) \leq n-1$.

Open Problem 7.2. Which subset of partitions whose parts are restricted modulo 5 do the polynomials in (8) generate?

Ekhad-Tre [16] also found

\[\sum_{j=0}^{n} q^{j^2} \left[\begin{array}{c} n \\ j \end{array} \right]_q = \frac{(q; q)_n}{(q; q^2)_n} \sum_{k=-n}^{n} (-1)^k q^{5k^2-5k} \left[\begin{array}{c} 2n \\ n-k \end{array} \right]_q \]

Sills [37, Sec. 6] also gives polynomial identities for

\[\sum_{j=0}^{n/2} q^{j^2} \left[\begin{array}{c} n \\ 2j \end{array} \right]_q. \]
There is a quintic transformation [21, Th. 7.1] which proves the RR identities

\[
\sum_{n=0}^{\infty} q^n (tq)^{2n} = \frac{(t^4 q^9, t^2 q^5; t^4 q^6; q^5)_{\infty}}{(t^2 q^3; q)_{\infty}} \sum_{k=0}^{n} \frac{q^k}{(q; q)_k}
= \frac{(t^4 q^8, t^2 q^3, t^4 q^6; q^5)_{\infty}}{(t^2 q^3; q)_{\infty}} \sum_{k=0}^{n} \frac{q^k}{(q; q)_k}
= \frac{(t^4 q^8, t^2 q^3, t^4 q^6; q^5)_{\infty}}{(t^2 q^3; q)_{\infty}} \sum_{k=0}^{n} \frac{q^k}{(q; q)_k}
\]

The only known proof of (9) uses orthogonal polynomials.

Open Problem 7.3. Find another proof of (9). What does it mean combinatorially, or for representations of \(A_1^{(1)}\). Is there a symmetric function version?

One may show that (9) implies a finite rational function identity which is nearly positive

\[
\sum_{k=0}^{n} \frac{q^k}{(q; q)_k} \equiv \frac{q^{5a+b+5(5k+1)+3b}}{(q^5; q^5)_a (q^5; q^5)_b (q^5; q^5)_c (q^5; q^5)_{n-(a+b+c+k+s)}} \sum_{k=0}^{n} q^{5(2s-k)} \frac{(q^5)}{(q^5; q^5)_k}.
\]

No direct bijection for the Rogers-Ramanujan identities is known, although the involution principle of Garsia and Milne [22] was created to give an indirect bijection.

Open Problem 7.4. Can this identity be mutated to one with only positive terms, and thereby lead to a direct RR bijection?

Using the Cauchy identity, whose bijective version is RSK, one obtains

\[
\sum_{\lambda} s_{\lambda}(xz, xq^2) s_{\lambda}(q^1, q^6, q^{11}, \ldots) = \frac{1}{(xz^2, xq^2; q^5)_{\infty}}.
\]

Because the Schur function with 2 variables is zero unless the partition has at most two parts, one may rewrite this as

\[
\frac{1}{(xz^2, xq^2; q^5)_{\infty}} = \sum_{N=0}^{\infty} x^N \frac{q^{2N}}{(q^5; q^5)_N} \sum_{b=0}^{[N/2]} q^{b[N-2b+1]} \left(\begin{array}{c} N \\ b \end{array} \right) \left(\begin{array}{c} N \\ b-1 \end{array} \right) q^b.
\]

All terms here are positive. May this be extended to a proof of RR?

In [29] refinements of the Rogers-Ramanujan identities are given by marking parts. These are based upon some sporadic positive rational function identities.

Open Problem 7.5. Can these identities be generated via computer algebra? Are they related to decompositions of polytopes, or Hilbert series in commutative algebra?

8. OTHER QUESTIONS

Type \(R_t\) and \(R_{II}\) orthogonal polynomials [27] satisfy the respective recurrence relations

\[
P_n(x) = (x - b_n)P_{n-1}(x) - \lambda_n(x - a_n)P_{n-2}(x),
\]
with the initial conditions
\[P_0(x) = 1, \quad P_1(x) = x - b_1. \]
and
\[Q_n(x) = (x - c_n)Q_{n-1}(x) - \lambda_n(x - a_n)(x - b_n)Q_{n-2}(z), \]
with the initial conditions
\[Q_0(x) = 1, \quad Q_1(x) = x - c_1. \]

There are linear functionals \(L_1 \) and \(L_2 \), defined on the appropriate vector space of rational functions, such that
\[
L_1 \left(x^j P_n(x)/\prod_{k=1}^{n} (x - a_{k+1}) \right) = 0, \quad 0 \leq j < n, \quad L_1(1) = \lambda_1
\]
and
\[
L_2 \left(x^j Q_n(x)/\prod_{k=1}^{n} (x - a_{k+1})(x - b_{k+1}) \right) = 0, \quad 0 \leq j < n.
\]

Open Problem 8.1. Develop a Viennnot theory for type \(R_I \) and \(R_{II} \) polynomials.

(Note: September 12, 2019: Jang Soo Kim and I have done this for type \(R_I \).)

Open Problem 8.2. Does a \(GL_n(\mathbb{F}_q) \) version of the cycle index generating function easily count involutions in \(GL_n(\mathbb{F}_q) \) (see [18]) or explain the competing \(q \)-versions of the Poisson distribution [19]? Are there separate \(q \)-Central Limit Theorems for the discrete and continuous \(q \)-Hermite polynomials?

A perfect Hamming 1-code is a subset \(S \) of the vertices of the \(n \)-dimensional cube \(X_n = \{0, 1\}^n \) so that the balls of radius one about points of \(S \) are disjoint and cover \(X_n \). Clearly for this to occur, \(n + 1 \) divides \(2^n \), so \(n \) must be one less than a power of two. Such perfect codes are known to exist.

The \(q \)-analogue of the Hamming scheme is a graph whose vertices are the maximal isotropic subspaces over \(\mathbb{F}_q \), with edges if they overlap maximally. In types \(B_n \) and \(C_n \) it is known that there are \((1 + q)(1 + q^2) \cdots (1 + q^n)\) such vertices, and the ball of radius 1 has size \((1 - q^{n+1})/(1 - q)\). Again the sphere packing condition implies that \(n = 2^k - 1 \) for some \(k \). It is known that such perfect codes exist for \(n = 3 \), but it is unknown for \(n \geq 7 \).

Open Problem 8.3. Settle the existence/non-existence question of perfect codes in the association schemes of dual polar spaces of types \(B_n \) and \(C_n \) for \(n = 2^k - 1, k \geq 3 \). See ([41, §8].)

The continuous \(q \)-Hermite polynomials \(p_n(x) \) satisfy
\[
p_{n+1}(x) = xp_n(x) - [n]_q p_{n-1}(x)
\]
while the discrete \(q \)-Hermite polynomials \(r_n(x) \) satisfy
\[
r_{n+1}(x) = xr_n(x) - q^{n-1}[n]_q r_{n-1}(x).
\]

There is another set of \(q \)-Hermite polynomials \(s_n(x) \) which satisfy
\[
s_{n+1}(x) = xs_n(x) - \frac{q^n - q}{q^1 - q^1}s_{n-1}(x).
\]
These polynomials remarkably have linearization formula

\[s_n s_m = \sum_{k=0}^{\min(m,n)} \ell_{nm}^k s_k, \]

where \(\ell_{nm}^k \) can be proven to be a non-negative polynomial in \(q \). A combinatorial interpretation of the moments for the corresponding indeterminate moment problem is known.

Open Problem 8.4. Find any of the following information about \(s_n(x) \): an explicit formula, generating function, or measure. Is there an Askey scheme with these polynomials at the bottom?

REFERENCES

16 DENNIS STANTON

[34] V. Reiner and D. Stanton, (q,t)-analogues and $GL_n(F_q)$. J. Algebraic Combin. 31 (2010), no. 3, 411-454.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: stanton@math.umn.edu