A HYPERGEOMETRIC HIERARCHY
FOR THE ANDREWS EVALUATIONS

D. STANTON

ABSTRACT. Several \(\phi F_5(1) \) evaluations are given which generalize Andrews’ \(\phi F_4(1) \) evaluations. All such evaluations are shown to be equivalent to transformations for a \(\phi F_3(1) \). The methodology allows for higher evaluations, for example an \(\phi F_7(1) \) is given which specializes to over 100 \(\phi F_4(1) \) results including all of Andrews’.

1. Introduction.

In [1] George Andrews listed 20 \(\phi F_4(1) \) evaluations, which he proved by induction using contiguous relations. He also stated 10 others, and said that many other related evaluations exists. This proliferation of evaluations has been somewhat mysterious, in that they did not fit into the hypergeometric hierarchy. Moreover, applying the WZ methodology [3] to prove them has met with only partial success. The purpose of this paper is to organize the evaluations into the hypergeometric framework by unifying their proof, and finding the more general transformations that naturally imply the evaluations.

The idea is to find several \(\phi F_5(1) \) evaluations, each one of which gives nine different \(\phi F_4(1) \) evaluations. 20 such results are given in Theorem 1 and the Appendix ((A1)-(A20)). In §4 (see Theorem 2) we state \(\phi F_6(1) \) and \(\phi F_7(1) \) evaluations, which prove 45 and 165 \(\phi F_4(1) \) evaluations, and 9 and 45 \(\phi F_5(1) \) evaluations respectively. All of Andrews’ evaluations are corollaries of Theorem 2.

In §5 a general result is given for changing any such evaluation into a transformation for a hypergeometric series at \(z \) (Proposition 3). New transformations for hypergeometric series arise, three are stated.

We use standard notation for hypergeometric series found in [4]. Also we let

\[
< z^n | F(z) >
\]
denote the coefficient of \(z^n \) in a formal power series \(F(z) \).

2. Preliminaries.

In [2], several transformations were given which proved Andrews’ original [1, (1.6)] \(\phi F_4(1) = 0 \). One of them is

\[
(a + n + 1)_{n} \phi F_4 \left(\frac{x + 1, z + 1, x - z + 1/2, -n, -a - n; 1}{2z + 2, 2x - 2z + 1, (-a - 2n)/2, (1 - a - 2n)/2} \right)
= (a + x + n + 2)_{n} \phi F_4 \left(\frac{x + 1, x - 2z, 1 - x + 2z, -n/2, (1 - n)/2; 1}{z + 3/2, x - z + 1, a + x + n + 2, -1 - a - x - 2n} \right).
\]

\[\text{This work was supported by NSF grant DMS-9400510.}\]
We shall see that suitably modifying (2.1) yields all of the results. In this section we review one proof of (2.1) and motivate the method for the generalization.

Equation (2.1) followed from the transformation [2, (5.4)]

\[3F_2 \left(\begin{array}{c} x + 1, z + 1, x - z + 1/2; 4y(1 - y) \\ 2z + 2, 2x - 2z + 1 \end{array} \right) = (1 - y)^{-x-1} \ 3F_2 \left(\begin{array}{c} x + 1, x - 2z, 1 - x + 2z; -\frac{z^2}{4(1 - y)} \\ z + 3/2, x - z + 1 \end{array} \right). \] (2.2)

We recapitulate one proof of (2.1), since the same technique will be used for the main results.

If we multiply both sides of (2.2) by $(1 - y)^{-a}/(1 - 2y)$, and put $z = 4y(1 - y)$, the right side is

\[\sum_{j=0}^{\infty} \frac{(x + 1, x - 2z, 1 - x + 2z)_j}{(1, z + 3/2, x - z + 1)_j} \left(\frac{-z^2}{64} \right)^j (1 - y)^{-a-x-1-3k}/(1 - 2y). \] (2.3)

We find the coefficient of z^n in (2.3) by using

\[\frac{(1 - y)^{-A}}{(1 - 2y)} = \sum_{k=0}^{\infty} \frac{(A + k + 1)_k}{k!} \left(\frac{z}{4} \right)^k. \] (2.4)

The resulting coefficient is

\[\frac{(a + x + n + 2)_n}{4^n n!} 5F_4 \left(\begin{array}{c} x + 1, x - 2z, 1 - x + 2z, -n/2, (1 - n)/2; 1 \\ z + 3/2, x - z + 1, -1 - x - a - 2n, a + x + n + 2 \end{array} \right). \]

The same method can be applied to the left side of (2.2), to obtain (2.1).

We record the above method in a lemma.

Lemma 1. If $z = 4y(1 - y)$, then for any formal power series $F(z) = \sum_k a_k z^k$,

\[< z^n | F(z)(1 - y)^{-a}/(1 - 2y) > = \]

\[\frac{(a + n + 1)_n}{4^n n!} \sum_{k=0}^{n} \frac{(-n, -a - n)_k}{((-a - 2n)/2, (1 - a - 2n)/2)_k}, \]

\[a \frac{(a + n + 1)_{n-1}}{4^n n!} \sum_{k=0}^{n} \frac{(-n, -a - n)_k}{((1 - a - 2n)/2, (2 - a - 2n)/2)_k}. \] (1)

Proof. The first part follows from (2.4), the second part from

\[(1 - y)^{-A} = \sum_{k=0}^{\infty} \frac{A(A + k + 1)_{k-1}}{k!} \left(\frac{z}{4} \right)^k. \] (2.5)
We modify (2.2) to an F_5 transformation by inserting the parameter pair $B + 1, B$ on the left side. The B-generalization of (2.2) (see Lemma 2) is an F_5 transformation. To state the results, we modify Andrews’ H-function

$$H(n, m, a_1, a_2, a_3) =$$

(2.6)

$$e_{F_4}\left(-m - n, x + m + n + 1 + a_1, x - z + 1/2, x + m + a_2, z + n + 1; 1 \right)$$

to

(2.7)

$$H_2(n, a_1, a_2, a_3, a_4) =$$

$$e_{F_5}\left(-n, x + n/2 + 1 + a_1, x - z + 1/2, x - B + 1; 1 \right)$$

where $\theta_1 = (2 + x + a_4 - n/2)/2$.

The dependence upon $x, z,$ and B in the H functions has been depressed, although sometimes we may append x, z to the notation. H_2 is a linear function of $1/B$, and thus is uniquely determined by its value at two different B’s. We next see that any H_2 evaluation implies nine H evaluations.

Proposition 1. $H_2(n, a_1, a_2, a_3, a_4)$ can be specialized to obtain nine different H functions:

- $H(n/2 - 1 - a_4, n/2 + 1 + a_4, a_1 - a_4, a_2 - 2a_4 - 2, a_3 - 2a_4 - 2)$,
- $H(n/2 - a_4, n/2 + a_4, a_1 - a_4 - 1, a_2 - 2a_4 - 1, a_3 - 2a_4 - 2)$,
- $H(n/2 - a_4, n/2 + a_4, a_1 - a_4 - 1, a_2 - 2a_4 - 1, a_3 - 2a_4 - 2)$,
- $H(n/2 - a_4 - 1, n/2 + a_4 + 1, a_1 - a_4 - 1, a_2 - 2a_4 - 2, a_3 - 2a_4 - 2)$,
- $H(n/2 - a_4 - 1, n/2 + a_4 + 1, a_1 - a_4 - 1, a_2 - 2a_4 - 2, a_3 - 2a_4 - 2)$,
- $H(n/2 - a_4 - 1, n/2 + a_4, a_1 - a_4, a_2 - 2a_4, a_3 - 2a_4)$,
- $H(n/2 - a_4 - 1, n/2 + a_4, a_1 - a_4, a_2 - 2a_4 - 1, a_3 - 2a_4 - 1)$ and
- $H(n/2 - a_4 - 1, n/2 - a_4, a_1 - a_4, a_2 - 2a_4 - 1, a_3 - 2a_4 - 2)$.

Proof. If $B = x + n/2 + a_1 + 1$, the H_2 function becomes

$$H(n/2 - 1 - a_4, n/2 + 1 - a_4, a_1 - a_4, a_2 - 2a_4 - 2, a_3 - 2a_4 - 2, x - n/2 + a_4 + 1, z - n/2 + a_4 + 1).$$

The next 8 choices are given by $B = z + 1, x - z + 1/2, 2z + a_3, 2x - 2z + a_1 + a_2 - a_3 - a_4, (x + 1 - n/2 + a_4)/2, x + a_2, -n, 0$, respectively. □
3. The main theorem,
We prove Theorem 1 from a \(\phi F_5 \) transformation, which is Lemma 2.

Lemma 2. If \(n \) is a non-negative integer,

\[
\begin{align*}
(-x - 3n/2 - a - 1)(-x - n/2 - a)_{n-1} H_2(n,a,1,1,a) = \\
\sum_{j=0}^{n/2} (x + 1, x - 2, 1 - x + 2z)_{j} (-n/2 - a + j + 1)_{n-2j-1} \\
\times (1 + n/B)(-3n/2 - a + 3j) + (x + 3n/2 + a + 1)(n - 2j)/B.
\end{align*}
\]

Proof. Apply \((1 - y)^{-\alpha}(B + z\frac{d}{dz})/B\) to both sides of (2.2), where \(z = 4y(1 - y) \). Lemma 1 implies that the coefficient of \(z^n \) on the left side is

\[
\frac{\alpha(\alpha + n + 1)_{n-1}}{n!4^n} \phi F_5 \left(\frac{x + 1, x + 1, x - z + 1/2, B + 1, -n, -\alpha - n}{2z + 2, 2z - 2z + 1, B, (1 - \alpha - 2n)/2, (2 - \alpha - 2n)/2} \right).
\]

If \(-\alpha - n = x + n/2 + a + 1\), then the \(\phi F_5 \) becomes the stated \(H_2 \).

Let \(R(y) \) denote the right side of (2.2). Then

\[
\begin{align*}
< z^n | (1 - y)^{-\alpha} R(y) &+ \frac{z}{B} (1 - y)^{-\alpha} \frac{d}{dz} (R(y)) >= \\
< z^n | (1 - y)^{-\alpha} R(y) &+ \frac{z}{B} \frac{d}{dz} ((1 - y)^{-\alpha} R(y)) - \frac{z}{B} R(y) \frac{d}{dz} ((1 - y)^{-\alpha}) >= \\
< z^n | (1 - y)^{-\alpha} R(y) &+ \frac{z}{B} \frac{d}{dz} ((1 - y)^{-\alpha} R(y)) - \frac{z}{B} R(y) \alpha (1 - y)^{-\alpha - 1}/4(1 - 2y) > .
\end{align*}
\]

We can routinely find the coefficient of \(z^n \) in each term using Lemma 1. Summing these terms gives the stated result. \(\square \)

In the statement of Theorem 1,

\[
R_n(x,z) = \frac{(1 - x + 2z, x - 2z, 1/2)_{n}}{(z + 3/2, 1 + x - z, -1 - x)_{n}}.
\]

Theorem 1. If \(n \) is a non-negative integer,

(A1) \(H_2(2n, 0, 1, 1, 0) = R_n(x, z) \frac{(B + 2n)(x + 1)}{B(x + 3n + 1)} \),

(A2) \(H_2(2n + 1, -1/2, 1, 1, -1/2) = R_n(x, z) \frac{(2n + 1)(B - x - 1 - n)(x + 1)}{B(x + 3n + 2)(x - n + 1)} \),

(A3) \(H_2(2n + 1, 1/2, 1, 1, 1/2) = R_n(x, z) \frac{(2n + 1)(2B - x - 1 + n)(x + 1)}{B(x + 3n + 3)(x + n + 1)} \).
Proof. If we set $a = 0$ in Lemma 2, and n is even, the right side factor $(-n/2 + j + 1)n_{n/2-j-1}$ is zero for $0 \leq j < n/2$, so only the $j = n/2$ term contributes. The choices $a = \pm 1/2$ work in the same way for n odd. \hfill \Box

According to Proposition 1, Theorem 1 gives 27 H evaluations. 23 of them are distinct, and 11 appeared in Andrews’ list of 30 in [1].

We can now easily prove many more $H2$ evaluations, by finding $H2$’s whose nine B specializations include two that are known from previous cases. We list these in the Appendix. Note that (A4) is independent of B. The number of H evaluations implied by these results is over 100.

Because of the proliferation of $H2$ evaluations, one may ask if it is possible to give a 1-balanced γF_6 evaluation, which will imply nine different $H2$ evaluations. One may also ask for a single evaluation which implies every one on Andrews list. In this section we explicitly answer both of these questions. In particular Theorem 2 evaluates a 1-balanced γF_7 which gives Andrews’ $30 \gamma F_4$’s and over 100 others.

Let

$$H3(n,a_1,a_2,a_3,a_4,x,z) =$$

$$\gamma F_6\left(-n,x + n/2 + 1 + a_1,x - z + 1/2,x + a_2,z + 1,B + 1,C + 1;1\right).$$

(4.1)

where $\theta_1 = (3 + x + a_4 - n/2)/2$. (We delete x and z in formula involving H functions if x and z are constant throughout.)

As before, $H3$ is a linear polynomial in $1/C$. As in Proposition 1, $H3$ can be specialized in nine ways to obtain an $H2$, any two of which determine $H3$. For example, $C = z + 1, C = x + a_2$ give

$$H3(n,a_1,a_2,a_3,a_4,x,z) = \frac{(C - z - 1)(x + a_2)}{C(x + a_2 - z - 1)}H2(n,a_1,a_2 + 1,a_3,a_4 + 1,x,z) +$$

$$\frac{(C - x - a_2)(z + 1)}{C(z + 1 - x - a_2)}H2(n,a_1 - 1,a_2 - 1,a_3 - 2,a_4,x + 1,z + 1).$$

(4.2)

Applying (A6) and (A7) to (4.2), we see that $H3(2n + 1,3/2,1,3,-1/2,x,z)$ is evaluable. A similar argument with

$$H3(n,a_1,a_2,a_3,a_4) = \frac{(2C - 2 - x - a_4 + n/2)(2z + a_3)}{C(4z + 2a_3 - 2 - x - a_4 + n/2)}H2(n,a_1,a_2,a_3 - 1,a_4 + 1) +$$

$$\frac{(C - 2z - a_3)(2 + x + a_4 - n/2)}{C(2 + x + a_4 - n/2 - 2z - a_3)}H2(n,a_1,a_2,a_3,a_4),$$

(4.3)

(A3), and (A8) evaluates $H3(2n + 1,1/2,1,2,-1/2,x,z)$.
We can iterate this technique to evaluate a single \(_8 F_7 \) that specializes to \(\binom{11}{3} \) = 165 \(H \)'s, including all 30 on Andrews’ list. Of the 165 possible specializations, 145 are distinct. Let

\[
H_4(n, a_1, a_2, a_3, a_4) =
\]

\(_8 F_7 \left(\frac{-n, x + n/2 + 1 + a_1, x - z + 1/2, x + a_2, z + 1, B + 1, C + 1, D + 1; 1}{\theta_1, \theta_1 + 1/2, 2z + 1 + a_3, 2x - 2z + 1 + a_1 + a_2 - a_3 - a_4; B, C, D} \right) ,
\]

where \(\theta_1 = (4 + x + a_4 - n/2)/2 \).

Theorem 2. If \(n \) is a non-negative integer, then

\[
H_4(2n + 1, 1/2, 1, 3, -3/2) = \\
K_1((C - z - 1)(x + 1)(A6)(x, z) - (C - x - 1)(z + 1)(A7)(x + 1, z + 1)) + \\
K_2((2C - 3 - x + n + 2)(2z + 2)(A3)(x, z) - (C - 2z - 2)(x - n + 1)(A8)(x, z)),
\]

where \((A6), (A7), (A3), \) and \((A8) \), are given in Theorem 1 and the Appendix, and

\[
K_1 = \frac{(D - 2z - 3)(x + n + 2)}{CD(x + n - 2z - 1)(x - z)}, \\
K_2 = \frac{(D - x - n - 2)(2z + 3)}{CD(x + n - 2z - 1)(x - n - 4z - 3)}.
\]

Proof. Use

\[
H_4(n, a_1, a_2, a_3, a_4) = \frac{(D - 2z - a_3)(x + n/2 + 1 + a_1)}{D(x + n/2 + 1 + a_1 - 2z - a_3)} H_3(n, a_1 + 1, a_2, a_3, a_4 + 1) + \\
(D - x - n/2 - 1 - a_1)(2z + a_3) H_3(n, a_1, a_2, a_3 - 1, a_4 + 1)
\]

and the two above evaluations of \(H_3 \)'s. \(\square \)

5. **Transformations.**

In this section we derive \(_4 F_3 \) transformations from any of the evaluations in Theorem 1 or the Appendix.

Suppose that \(F(z) = \sum_{k=0}^{\infty} a_k z^k \) is a formal power series. We will use the following lemma.

Lemma 3. If \(z = 4y(1 - y), \ w = y/\sqrt{1-y} \). Then

\[
< z^n [F(z)(1 - y)^{-a}(1 - 2y)] > = < w^n [F(z)(1 - y)^{-a-3n/2}/(1 - y/2)4^{-n}] > .
\]

Proof. We change variables from \(z \) to \(y \) to \(w \):

\[
< z^n [F(z)(1 - y)^{-a}(1 - 2y)] > = < y^n [F(z)(1 - y)^{-a-n-1}4^{-n}] > = \\
< w^n [F(z)(1 - y)^{-a-3n/2}/(1 - y/2)4^{-n}] > .
\]
Most of the evaluations (A1)–(A20) have the form below, so we suppose that

(5.1) \[
\sum_{k=0}^{n} \alpha_k \frac{(-n, x + n/2 + \gamma)_{k}}{((x - n/2 + \gamma)/2, (x - n/2 + \gamma + 1)/2)_k} = \beta_n.
\]

(5.2) \[
\sum_{k=0}^{n} \alpha_k \frac{(-n, x + n/2 + \gamma)_{k}}{(1 + x - n/2 + \gamma)/2, (2 + x - n/2 + \gamma)/2)_k} = \delta_n.
\]

Let

\[G(y) = F(4y(1 - y))(1 - y)^{x+\gamma}/(1 - y/2). \]

Proposition 2. If (4.1) and (4.2) hold, then

1. \[
G(y) + G(y/(y-1)) = 2 \sum_{N=0}^{\infty} \beta_{2N} \frac{(1 - x - \gamma - N)_{2N}}{(2N)!} \frac{y}{\sqrt{1 - y}}^{2N}
\]

2. \[
G(y) - G(y/(y-1)) = 2 \sum_{N=0}^{\infty} \beta_{2N+1} \frac{(1/2 - x - \gamma - N)_{2N+1}}{(2N+1)!} \frac{y}{\sqrt{1 - y}}^{2N+1}
\]

\[G(y)(1 - 2y) + G(y/(y-1))(1 + y) = \]

3. \[
2 \sum_{N=0}^{\infty} \delta_{2N} (-x - 3N - \gamma) \frac{(1 - x - \gamma - N)_{2N-1}}{(2N)!} \frac{y}{\sqrt{1 - y}}^{2N}
\]

\[G(y)(1 - 2y) - G(y/(y-1))(1 + y) = \]

4. \[
2 \sum_{N=0}^{\infty} \delta_{2N+1} (-x - 3N - \gamma - 3/2) \frac{(1/2 - x - \gamma - N)_{2N}}{(2N+1)!} \frac{y}{\sqrt{1 - y}}^{2N+1}.
\]

Proof. We prove the first statement, the other three are done similarly. Expand \(G(y)+G(y/(y-1))\) as a power series in \(w = y/\sqrt{1-y}\). Since the map \(y \rightarrow y/(y-1)\) sends \(w\) to \(-w\), \(G(y)+G(y/(y-1))\) is an even function of \(w\). Lemma 2 implies

\[<w^{2N}G(y)> = <w^{2N}|F(z)(1 - y)^{x+\gamma}/(1 - y/2)> = <z^{2N}|F(z)(1 - y)^{x+\gamma+3N}4^{2N}/(1 - 2y)>. \]

The result follows from Lemma 1 and (4.1). The odd part gives the second statement, while the second part of Lemma 1 gives the final two results. \(\square\)
We apply Proposition 1 to (A1), (A2), and (A4). We find

\[
\begin{align*}
4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; 4y(1 - y) \right) (1 - y)^{x+1}(1 - 2y) + \\
2z + 2, 2x - 2z + 1, B \\
(5.3) \quad 4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; -4y/(1 - y)^2 \right) (1 - y)^{-x-1}(1 + y) = \\
2(1 - y/2)4F3\left(x + 1, -x + 2z, x - 2z, x - B + 2; -y^2/4(1 - y) \right),
\end{align*}
\]

\[
\begin{align*}
4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; 4y(1 - y) \right) (1 - y)^{x+1/2}(1 - 2y) - \\
2z + 2, 2x - 2z + 1, B \\
4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; -4y/(1 - y)^2 \right) (1 - y)^{-x-1/2}(1 + y) = \\
2(1 - y/2)\frac{(x - B + 1)y}{B\sqrt{1 - y}}4F3\left(x + 1, -x + 2z, x - 2z, x - B + 2; -y^2/4(1 - y) \right),
\end{align*}
\]

\[
\begin{align*}
4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; 4y(1 - y) \right) (1 - y)^{x+2} + \\
2z + 3, 2x - 2z + 2, B \\
(5.5) \quad 4F3\left(x + 1, z + 1, x - z + 1/2, B + 1; -4y/(1 - y)^2 \right) (1 - y)^{-x-1} = \\
2(1 - y/2)4F3\left(x + 2, -x + 2z, x - 2z, -y^2/4(1 - y) \right),
\end{align*}
\]

(4.3)-(4.5) generalize the 3F2 transformations given in [2].

We can also give 6F5(1) transformations (analogous to Lemma 2), by multiplying the transformations in Proposition 2 by (1 - y)^{-a}, and expanding either as function of z of y. These results have the form 6F5(1)+6F5(1)=6F5(1).

It is not surprising that results such as (A1)-(A20) exist in view of Andrews’ results. Inserting the a pair B + 1, B into a 5F4 gives a sum of two 5F4’s, so there should be a result with two terms. The choices in (A1)-(A9) are particularly nice, appearing as one term.

Andrews’ original 5F4 = 0 follows immediately from any of (A1)-(A9) by specializing the linear factor in B to be 0.

Theorem 2 specializes to 11 of the 20 evaluations (A1)-(A20). One could give a 9F8 evaluation (as a sum of 8 terms) generalizing Theorem 2 which implies (A1)-(A20).

Evaluations of 2, 3 and 4- balanced 5F4’s are obtained by taking the B, C, D → ∞ limits of Theorem 2 and (A1)-(A20).
One can obtain transformations of 2-balanced series, without appealing to B. For example, if the second part of Lemma 1 is applied to (2.2) one finds

\[(a + x + 1)_{2n} \binom{a}{a + 1}_{n} F_4 \left(\begin{array}{c}
1 + x, z + 1, x - z + 1/2, -n, -a - n, 1 \\
n + 2, 2x - 2z + 1, (1 - a - 2n)/2, (2 - a - 2n)/2
\end{array} \right)
= \frac{(a + x + 1)_{2n}}{(a + x + 2)_{n}} F_5 \left(\begin{array}{c}
x + 1, x - 2z, 1 - x + 2z, -n/2, (1 - n) / 2, (x + a + 4) / 3, 1 \\
z + 3/2, x - z + 1, a + x + n + 2, -a - x - 2n, (x + a + 1) / 3
\end{array} \right)
\] .

Appendix.

We state several other $H2$ evaluations, besides the three given in Theorem 1. (A4)-(A9) were chosen because of the simple form, (A10)-(A20) because of the simple form of the $B \to \infty$ limit, which is a 2-balanced F_4 evaluation.

We use

\[S_n(x, z, a, b, c) = \frac{(1 - x + 2z + a, x - 2z + b, 1/2)_{n}}{(z + 3/2 + c, 1 + x - z + a + b, -1 - x)_{n}},\]

so that $R_n(x, z) = S_n(x, z, 0, 0, 0)$.

(A4) \hspace{1cm} H2(2n, 1, 2, 2, 0) = R_n(x, z),

(A5) \hspace{1cm} H2(2n + 1, 3/2, 2, 1, 1/2) = S_n(x, z - 1, 2, -2, 1) \frac{(2n + 1)(1 - 2B + 2x - 2z)}{B(2z - 2x - 3)},

(A6) \hspace{1cm} H2(2n + 1, 3/2, 2, 3, 1/2) = S_n(x, z, 0, 0, 1) \frac{(2n + 1)(B - 1 - z)}{B(z + 2)},

(A7) \hspace{1cm} H2(2n + 1, 1/2, 0, 1, -1/2) = S_n(x - 2, z, -1, 3, 0) \frac{(2n + 1)(-x + n)(x - B)}{B(x + n)_{2}}

(A8) \hspace{1cm} H2(2n + 1, 1/2, 1, 2, -1/2) = S_n(x - 1, z, 0, 1, 0) \frac{(2n + 1)(B - 2z - 2)}{B(2z + 2n + 3)}

(A9) \hspace{1cm} H2(2n + 1, 1/2, 1, 1, -1/2) = S_n(x - 1, z, -1, 2, 0) \frac{(2n + 1)(1 - B + 2x - 2z)}{2B(z - x - n - 1)}

(A10) \hspace{1cm} H2(2n, 1, 1, 2, 0, x, z) = S_n(x - 1, z, 0, 1, 0) \frac{(x - n + 1)(B(2z - x - n + 1) + 2n(z + 1))}{B(x + n + 1)(2z - x + n + 1)}

(A11) \hspace{1cm} H2(2n, 1, 1, 1, 0, x, z) = R_n(x, z) \frac{(1 + x)(B(2z - x + n) + n(2z - 2x - 1))}{(2z - x)B(x + n + 1)}
\begin{align}
H_2(2n + 1, 1/2, 1/2, 1/2, x, z) &= \\
R_n(x, z) \frac{(2n + 1)(B(2x + 3n + 5) - (z + 1)(2x + 2n + 4))}{(2z + 2n + 3)B(x + 3n + 3)} \\
H_2(2n + 1, 3/2, 2, 1/2, x, z) &= \\
R_n(x, z) \frac{(2n + 1)(B(3x - 2z + 3n + 4) + (2z - 2x - 1)(x + n + 2))}{2B(x + 3n + 3)(x - z + n + 1)} \\
H_2(2n + 1, -1/2, 0, 0, -1/2, x, z) &= \\
S_n(x - 1, z, -1, 2, 0) \frac{x(2n + 1)(B(4z - x + 3n + 2) - 2x(z + 2n + 1) + 2nz)}{(2z + 1)B(x + 3n + 2)(x + n)} \\
H_2(2n + 1, 1/2, 1/2, 1, -1/2, x, z) &= \\
S_n(x, z, 1, 1, -1, 1) \frac{(2n + 1)(B(2z + 2n + 1) + (n + x + 2)(2z - 2x - 1))}{(2z - 2x - 3)B(-x + n - 1)} \\
H_2(2n, 0, 1, 2, 0, x, z) &= S_n(x, z, 0, -1, 0) \frac{1 + x)(B(2z - x - 3n + 1) + 4n(z + 1))}{(1 - x + 2z)B(x + 3n + 1)} \\
H_2(2n, 0, 1, 0, x, z) &= S_n(x, z - 1, -1, 2, 0) \frac{(1 + x)(B(2z - x + 3n) + n(4z - 4x - 2))}{(-x + 2z)B(x + 3n + 1)}
\end{align}

References