1. (5 points) Set up an integral for the area of the surface obtained by rotating the curve \(y = e^x \), \(0 \leq x \leq 1 \), about the \(x \)-axis.

\[
\begin{align*}
\frac{dy}{dx} &= e^x, \quad \left(\frac{dy}{dx}\right)^2 &= e^{2x} \\
S &= \int_0^1 2\pi e^x \sqrt{1 + e^{2x}} \, dx
\end{align*}
\]

2. (7 points) Show that every member of the family of functions

\[y = ce^x \]

is a solution of the differential equation \(y' = y \). Here \(c \) is a constant.

\[
\begin{align*}
\frac{dy}{dx} &= ce^x, \\
y_1 &= ce^x \\
\text{So } y_1 &= ce^x \text{ is a solution to } y' = y.
\end{align*}
\]
3. (8 points) Find the center of mass of a semicircular plate of radius 1.

\[y = \sqrt{1-x^2} \]

+2 Correct equation bounding semicircle

\[A = \int_{-1}^{1} \sqrt{1-x^2} \, dx \]

\[x = \sin \theta \]
\[dx = \cos \theta \, d\theta \]
\[l = \sin \theta \]
\[\theta = \frac{\pi}{2} \]
\[-l = \sin \theta \]
\[\theta = -\frac{\pi}{2} \]

\[A = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^2 \theta} \cos \theta \, d\theta \]

\[= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta \]
\[= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos 2\theta) \, d\theta \]
\[= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \bigg|_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \]
\[= \frac{\pi}{4} + 0 - (\frac{\pi}{4} + 0) \]
\[= \frac{\pi}{2} \]

or

\[A \text{ is the area of a semicircle of radius 1} \]
\[A = \frac{1}{2} \pi \cdot (1)^2 \]
\[= \frac{\pi}{2} \] +2 \(A = \frac{\pi}{2} \)

+2 \(x = 0 \) by symmetry

\[\bar{x} = \frac{1}{A} \int_{-1}^{1} x y(x) \, dx \]
\[= \frac{2}{\pi} \int_{-1}^{1} x \sqrt{1-x^2} \, dx \]
\[u = 1-x^2 \quad u(-1) = 0 \]
\[du = -2xdx \quad u(0) = 0 \]
\[= \frac{-1}{\pi} \int_{0}^{1} \sqrt{u} \, du \]
\[= 0 \]

\[\bar{x} = 0 \]

\[\bar{y} = \frac{1}{A} \int_{-1}^{1} \left[y(x) \right]^2 \, dx \]
\[= \frac{2}{\pi} \int_{-1}^{1} (1-x^2) \, dx \]
\[= \frac{\pi}{4} \left[x - \frac{x^3}{3} \right]_{-1}^{1} \]
\[= \frac{\pi}{4} \left(1 - \frac{1}{3} - (1 - \frac{1}{3}) \right) \]
\[= \frac{4}{3\pi} \]

+2 \(\bar{y} = \frac{4}{3\pi} \)

The center of mass is \((0, \frac{4}{3\pi})\).