1. Let \(G_{B_R}(x, y) = -\frac{1}{4\pi|x-y|} + \frac{R}{4\pi|x-y|^3} \) (where \(y^* = y \frac{R^2}{|y|^2} \)) be the Green’s function for \(B_R \). Let us denote \(y' = (y_1, y_2, -y_3) \). For \(y \in B_R^+ \) we set \(G(x, y) = G_{B_R}(x, y) - G_{B_R}(x, y') \). Then clearly \(G(x, y) \) vanishes when \(|x| = R \). When \(x_3 = 0 \), then \(G_{B_R}(x, y) = G_{B_R}(x, y') \), because in that case we have \(|x-y| = |x-y'| \) and \(|x-y^*| = |x-y'|^* \), due to the reflection symmetry about the \(x_1x_2 \) plane. Hence \(G(x, y) \) vanishes when \(x_3 = 0 \) and we see that the function \(x \mapsto G(x, y) \) vanishes at the boundary of \(B_R^+ \). Clearly \(\Delta G(x, y) = \delta(x-y) \) in \(B_R^+ \) (as \(y \) is the only point of the set \(y, y^*, y', y'' \) which lies in \(B_R^+ \)), and therefore \(G(x, y) \) is the desired Green’s function of \(B_R^+ \).

2. Extend \(f \) first to the square \([0,1] \times [0,1]\) by \(f(x_1, x_2) = -f(x_2, x_1) \). Then to the square \([0,2] \times [0,2]\) by \(f(x_1, x_2) = -f(2-x_1, x_2); (x_1, x_2) \in [1,2] \times [0,1], f(x_1, x_2) = f(2-x_1, 2-x_2), (x_1, x_2) \in [0,1] \times [1,2]; f(x, y) = f(2-x, y) = f(x, 2-y), f(x_1, x_2) = f(2-x_1, 2-x_2), (x_1, x_2) \in [1,2] \times [1,2] \). And finally to a function on \(\mathbb{R}^2 \) (still denoted by \(f \)) which is \(2 \)-periodic in \(x_1 \) and \(2 \)-periodic in \(x_2 \). Set \(F(x) = f(2x) \). The function \(F \) is \(1 \)-periodic in \(x_1 \) and \(x_2 \), and we use the machine to calculate its Fourier coefficients \(\hat{F}(k) \). We set \(\hat{U}(k) = -\frac{f(k)}{\pi|k|^2} \) (note that there is no \(4 \) in front of \(\pi^2 \)) when \(k \neq 0 \) and \(\hat{U}(0) = 0 \), and use the machine to obtain \(U(x) = \sum_k \hat{U}(k)e^{2\pi ikx_1x_1+kx_2x_2} \). The function \(U \) solves \(\frac{1}{4} \Delta U = F \), with the factor \(\frac{1}{4} \) coming from skipping the \(4 \) in front of \(\pi^2 \) as noted above. We set \(u(x) = U(x) \) and note that \(\Delta u(x) = \frac{1}{4} \Delta U(x) = F(x) \). The function \(u \) has the same symmetries as \(f \), and hence vanishes at the boundary of our triangle, and is the (unique) solution to our problem.

3. Searching \(u(x) = \frac{f(r)}{r} \) (with \(r = |x| \)), we obtain the equation \(\nu'' = -\lambda \nu \) for \(\nu \). We are looking for solutions which vanish at \(r = 1 \). In addition, the solutions also have to vanish at \(r = 0 \), so that \(u(x) = \frac{f(r)}{r} \) is not singular at \(r = 0 \). We have seen this problem before. The solutions are of the form \(\nu(r) = \sin(\pi kr), \lambda = \pi^2 k^2, k = 1, 2, \ldots \) Hence the radial eigenfunctions are \(\frac{\sin \pi kr}{r} \) with the corresponding eigenvalues \(\pi^2 k^2 \).

4. It is enough to prove the statement for \(P(z) = z^m \). We have \(\frac{\partial}{\partial z} (x+i y)^m = m(x+iy)^{m-1} \), \(\frac{\partial^2}{\partial z^2} (x+i y)^m = m(m-1)(x+iy)^{m-2} \). This can also be written as \(\frac{\partial^2}{\partial x^2} z^m = m(m-1)z^{m-2} \). Similarly, \(\frac{\partial^2}{\partial y^2} (x+i y)^m = im(x+iy)^{m-1} \), \(\frac{\partial^2}{\partial x \partial y} (x+i y)^m = -m(m-1)(x+iy)^{m-2} \). Hence \(\Delta z^m = 0 \). There are many other ways to arrive at the same conclusion. For example, one can use the polar coordinates to write \(z^m = r^m e^{im\theta} \) and use the expression \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \) to check that \(r^m e^{im\theta} \) is harmonic.

Remark: The above problem asks to verify “by hand” a statement which is arises from some basic considerations of complex analysis. There one works with \(\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \) and \(\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \) with \(i = \sqrt{-1} \). One can check by an easier version of the above calculations that \(\frac{\partial^2}{\partial z \partial \bar{z}} = \frac{1}{4} \Delta \).

5. Option 1: The direction perpendicular to \(H \) is given by the vector \(a = (1,1,1) \). Hence for \(x \in \mathbb{R}^3 \), its projection \(x' = Px \) will be given by the conditions \(x' = x - ta \) and \(x_1' + x_2' + x_3' = 0 \). The last condition is the same as \(x_1 + x_2 + x_3 = 3t = 0 \), which gives \(t = \frac{x_1 + x_2 + x_3}{3} \). Substituting this into the expression \(x' = x - ta \), we obtain \(P = \left(\begin{array}{ccc} -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{array} \right) \).

Option 2: We need to find two mutually perpendicular vectors \(a, b \in H \). For our particular \(H \) it is not hard to find such vectors without much calculation. For example, \(a = (1,1,-1,-1) \) and \(b = (1,-1,1,1) \) have the desired properties.

The length of both \(a \) and \(b \) is \(\sqrt{1+1+1+1} = 2 \), so the desired projection is \(P = \frac{1}{4} a \otimes a + \frac{1}{4} b \otimes b = \left(\begin{array}{cccc} \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \).

6. For \(u(x) = (R^2 - x_1^2 - x_2^2 - x_3^2)(b_1 x_1 + b_2 x_2 + b_3 x_3 + b_0) \), we obtain \(\Delta u = -10 b_1 x_1 - 10 b_2 x_2 - 10 b_3 x_3 - 6 b_0 \). Hence the solution is obtained by taking \(b_j = -\frac{1}{10}, j = 1, 2, 3 \) and \(b_0 = -\frac{1}{6} \).

In general, if \(P \) is a polynomial of degree at most \(m \) in \(x_1, x_2, x_3 \), then \(Lu = \Delta [(R^2 - x_1^2 - x_2^2 - x_3^2) P(x_1, x_2, x_3)] \) is again a polynomial of degree at most \(m \). Denoting by \(P_m \) the linear space of all polynomials of degree \(\leq m \) in \(\mathbb{R}^3 \), we see that \(L \) maps \(P_m \) to \(P_m \). Clearly \(L \) is a linear mapping (and hence it can be represented by a matrix, if we choose a bases in \(P_m \). We claim that the equation \(LP = 0 \) for \(P \in P_m \) only has the trivial solution \(P = 0 \). To see that, we note that \(LP = 0 \) implies that \(u = (R^2 - |x|^2)P \) is harmonic. At the same time, \(u \) vanishes at the boundary of \(B_R \). These two facts imply that \(u = 0 \) and hence also \(P = 0 \). (One can use the maximum principle, for example, or other methods used to prove uniqueness of solutions for \(\Delta u = 0 \) in \(B_R \) and \(\partial_{B_R} u = 0 \).) We see that the equation \(LP = 0 \) for \(P \in P_m \) has only the trivial solution \(P = 0 \). Hence the equation \(LP = Q \) has a unique solution \(P \in P_m \) for every \(Q \in P_m \).