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1. Vectors and the Three-Dimensional Space

Problem 1.1. Determine if the given three points are co-linear (i.e. lie on one line).
(1) A = (2, 0,−1), B = (1,−1,−2) and C = (−3, 1, 0)
(2) A = (−1, 4, 3), B = (−2, 4, 1) and C = (2, 0, 1)

Problem 1.2. Describe and find the equation of the set of all points that are equidis-
tant to the two points A = (−1, 5, 3) and B = (6, 2,−2).
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Problem 1.3. For each of the vectors given below, find a unit vector that has the
same direction.

v = 〈2, 1,−2〉 w = 〈−4, 0, 3〉
Further, find vectors of length 2 with the same direction.

Problem 1.4. In R2, v is a unit vector which lies in the first quadrant. Suppose the
angle between v and the positive y-axis is π/4, find v in component form.
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Problem 1.5. Let a = 〈2, 1, 1〉 and b = 〈−1, x, 3〉. Find the value of x such that a is
orthogonal to b .

2. Cross Product, Lines and Planes

Problem 2.1. Find a non-zero vector that is orthogonal to the plane containing the
three points

A = (2,−3, 4) B = (−1,−2, 2) C = (3, 1,−3)
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Problem 2.2. Determine whether the following points are co-planer.
A = (1, 3, 2) B = (3,−1, 6) C = (5, 2, 0) D = (3, 6,−4)

Problem 2.3. Use equations of lines to determine whether the following three points
are colinear.

A = (2, 4,−3) B = (3,−1, 1) C = (1, 9, 1)

Hint: Find the equation of the line through AB and check if C is on the line.
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Problem 2.4. Find the equation of the plane through A = (2, 4,−3), B = (3,−1, 1),
and C = (1, 9, 1).

Problem 2.5. Find the equation of the line through (3, 2,−4) with direction 〈−1, 2, 5〉.
Find its intersection with the plane from Problem 2.4.
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3. Multivariable Functions, Limits and Partial Derivatives

Problem 3.1. Find the domains and level curves of the functions
f(x, y) =


4− x2 − y2 and f(x, y) = x+

√
y,

and sketch their graphs.

Problem 3.2. Find the following limits, or demonstrate if not exists.

(1) lim
(x,y)→(2,−1)

x2y + xy2

x2 − y2

(2) lim
(x,y)→(0,0)

xy3

x4 + y4

(3) lim
(x,y)→(0,0)

5y2 cos2 x

x2 + y2
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Problem 3.3. Determine the set of points where the function is continuous.

(1) f(x, y) =
2x2 + y

1− x2 − y2

(2) f(x, y) =






2xy

x2 + y2 + xy
if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0)

Problem 3.4. Evaluate the following second partial derivatives.

(1)
∂2

∂x∂y
ln(x+ y)

(2)
∂2

∂x∂y
exy sin(x)
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4. Chain Rule and Directional Derivatives

Problem 4.1. Find dz/dt for z =
√
xy + 1, x = tan t and y = arctan(t).

Problem 4.2. Find ∂u/∂s and ∂u/∂t for
u = zexy x = s+ t y = s− t z = st
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Problem 4.3. Find ∂z/∂x and ∂z/∂y, where

x2 + 4y2 + z2 − 2z = 6

Problem 4.4. For each function f , find the gradient ∇f and the directional derivative
Duf.

(1) f(x, y, z) = x2z + xyz + yz2, u = 〈1,−1, 1〉.
(2) f(x, y) = ex sin(xy), u = 〈2, 1〉.
(3) f(x, y, z) = xey − y2exz, u = 〈−1, 0, 2〉.
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Problem 4.5. Find the maximal rate of change of f(x, y, z) = xey−y2exz at the point
P (1, 0,−1). In what direction does that occur?

Problem 4.6. Find the tangent plane and normal line to xy2 = 2zex+y + 3 at
(1,−1,−1).
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A. Additional Problems I

Problem A.1. Show that the following limits do not exist.

(1) lim
(x,y)→(0,0)

x sin y

y2

(2) lim
(x,y)→(0,0)

x3y2

x6 + y4

Problem A.2. Find the limit or show that it doesn’t exist.

(1) lim
(x,y)→(2,1)

x2 − 2xy

x2 − 4y2

(2) lim
(x,y)→(0,1)

y − 1

x2 + y − 1

(3) lim
(x,y)→(0,0)

x4y + x2y2

2x6 + y3
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5. Maxima and Minima

Problem 5.1. Find the local maxima/minima and saddle points of the function.

f(x, y) = x2 + y − 2xy and f(x, y) =
x2 + y2

ex

Problem 5.2. Find the shortest distance from the plane x − 2y − z − 3 = 0 to the
origin.
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Problem 5.3. Find the absolute minima of the function f(x, y) = x2 − 4xy+ y2 +3y
in the quadrilateral given by the four points (0, 0), (2, 0), (0, 3) and (2, 3).

Problem 5.4. Find the absolute maximum and minimum of the function f(x, y) =
x2 + 2xy + y in the region bounded by y = 1− x2, y = x− 1, the y-axis and x ≥ 0.
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6. Lagrange Multipliers

Problem 6.1. Find the extreme values of f(x, y, z) = exyz with constraint 2x2 + y2 +
z2 = 24

Problem 6.2. Find the shortest distance from the plane x − 2y − z − 3 = 0 to the
origin. Problem 5.2 once again, this time use Lagrange multiplier.
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Problem 6.3. Find the extreme value of f(x, y, z) = x2+y2+ z2 subject to x−y = 1
and y2 − z2 = 1.
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7. Basic Double Integrals

Problem 7.1. Evaluate the following integrals.

(1)
 π

0

 1

0

2x+ sin(y) dx dy

(2)
 3

1

 1
3

1

ln y

xy
dy dx

(3)


R

2xy2

x2 + 1
dA, where R = [0, 1]× [−3, 3]. (i.e. 0 ≤ x ≤ 1, −3 ≤ y ≤ 3.)

Problem 7.2. Fill in the boxes so that the following equality holds
 2

0

 x2−1

−1

xy dy dx =

 □

□

 □

□
xy dx dy.

Then evaluate the integral using one of the above.
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8. More on Double Integrals

Problem 8.1. Evaluate the following double integrals.

(1)
 π

2

0

 x

0

x sin y dy dx

(2)


D

ey
2

dA, where D = {(x, y) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y}

Problem 8.2. Evaluate the following integrals.

(1)


D

(x2 + 2y) dA, where D is bounded by y = x, y = x3, x ≥ 0.

(2)


D

(2x− y) dA, where D is the circle centered at the origin with radius 2.
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Problem 8.3. Find the volume of the solid bounded by the cylinders x2 + y2 = r2

and y2 + z2 = r2.

9. Double Integral with Polar Coordinates

Problem 9.1 (Problems 8.2 (2)). Evaluate


D

(2x − y) dA, where D is the circle

centered at the origin with radius 2.
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Problem 9.2. Find the following integral using polar coordinates.
 a

0

 √
a2−y2

0

xy2 dx dy

Problem 9.3. Find the


R

(x2 + y2) dA where R is in the first quadrant bounded

by x2 + y2 = 1, x2 + y2 = 9, y = x and y = 0.
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10. Triple integrals

Problem 10.1. Evaluate the integral
 1

0

 2y

y

 x+y

0

6xy dz dx dy

Problem 10.2. Evaluate the integral


E

ez/y dV , where E is bounded by E =

{(x, y, z)|0 ≤ y ≤ 1, y ≤ x ≤ 1, 0 ≤ z ≤ xy}.
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Problem 10.3. Evaluate


E

x2 dV where E is the solid bounded by x2 + y2 = 4,

x+ z = 2, and z = 0. (Hint: You may use the fact that
 2π

0
cos3(θ) dθ = 0.)

Problem 10.4. Find the volume of the solid bounded by the cylinders x2 + y2 = r2

and x2 + z2 = r2.
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11. Cylindrical, spherical coordinates, and change of variables.

Problem 11.1. Set up the integral to calculate the volume bounded by the sphere
x2+y2+z2 = 16 and the cone z =


3(x2 + y2) using Cartesian coordinates, cylindrical

coordinates and spherical coordinates respectively.

Problem 11.2. Rewrite the integral


E

xex
2+y2+z2dV where E is the portion of

the sphere x2 + y2 + z2 = 1 in the first octant.
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Problem 11.3. Evaluate


R
(4x + 8y)dA where R is the parallelogram wit vertices

(−1, 3), (1,−3), (3,−1) and (1, 5). Use the transformation x = 1
4
(u + v) and y =

1
4
(v − 3c).
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12. Vector Fields and Line Integral

Problem 12.1. Find the gradient vector fields of the following functions and sketch
them.

f(x, y) =
1

2
(x2 − y2), f(x, y) = (x+ y)2

Problem 12.2. Find the gradient vector fields of

f(x, y, z) = x2ye
y
z , f (x, y, z) = z2ex

2+4y + ln
xy
z
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Problem 12.3. Compute the line integral


C

ex dx where C is the arc of the curve

x = y3 from (−1,−1) to (1, 1).
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Problem 12.4. Compute the line integral


C

y2z ds where C is the line segment from

(3, 1, 2) to (1, 2, 5).

Problem 12.5. Find the line integral


C

F · dr where F(x, y, z) = (x2 + y) i+ xz j+

(y + z) k, and C is given by the function r(t) = t2 i+ t3 j− 2t k, 0 ≤ t ≤ 2.
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13. Conservative vector fields and fundamental theorem of path integrals.

Problem 13.1. Determine whether or not F is a conservative vector field, and if so,
find the function f such that F = ∇f .

(1) F(x, y) = (y2 − 2x)i+ 2xyj
(2) F(x, y) = yexi+ (ex + ey)j

Problem 13.2. Evaluate the following line integrals

C
∇f dr.

(1) f (x, y) = x3 (3− y2) + 4y and C is given by r (t) = 〈3− t2, 5− t〉 with −2 ≤
t ≤ 3

(2) f (x, y) = yex
2−1 + 4x

√
y and C is given by r (t) = 〈1− t, 2t2 − 2t〉 with 0 ≤

t ≤ 2.
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Problem 13.3. Evaluate

C
F dr, where F(x, y, z) = (y2z + 2xz2)i+ 2xyzj+ (xy2 +

2x2z)k and C is given by 〈
√
t, t+ 1, t2〉 with 0 ≤ t ≤ 1.
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14. Green’s Theorem

Problem 14.1. Evaluate the integral


C

y4 dx+ 2xy3 dy where C is the ellipse x2 +

2y2 = 2 oriented positively.

Problem 14.2. Evaluate

C
F · dr where F = (x2 + y) i + (2x − y2) j and C is a

positively oriented circle given by (x− 2)2 + (y − 7)2 = 4.
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Problem 14.3. Find the area of the polar curve r = 1− cos θ. (Use calculator.)

15. Curl and Divergence

Problem 15.1. Find the curl and divergence of the vector fields.
(1) F(x, y, z) = sin(yz) i+ sin(xz) j+ sin(xy) k
(2) F(x, y, z) = xyz4 i+ x2z4 j+ 4x2yz3 k
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Problem 15.2. Show that F = 〈yexy+yz+z, x(exy+z)−z sin(yz), xy+x−y sin(yz)〉
is a conservative vector field and find the function f such that F = ∇f .
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16. Parametric surface and surface integrals

Problem 16.1. Find a parametrization for the following surfaces.
(1) The plane that passes through the point (0,−1, 5) and contains the vectors

〈2, 1, 4〉 and 〈−3, 2, 1〉.
(2) The part of the ellipsoid x2 + 4y2 + 9z2 = 1 which lies to the left of xz-plane.
(3) The parts of the plane x+2y+ z = 1 which lies inside the cylinder x2+y2 = 1.

Problem 16.2. Find the tangent plane to surfaces r(u, v) = (u2 + 1)i + (v3 + 1)j +
(u+ v)k at (5, 2, 3).
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Problem 16.3. Evaluate the surface integral


S

(x2 + y2) dS, where S is given by

r(u, v) = 〈2uv, u2 − v2, u2 + v2〉, u2 + v2 ≤ 1.

Problem 16.4. Find the surface area of part of the sphere x2+ y2+ z2 = 4 which lies
inside the cylinder x2 + y2 = 2x.
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Problem 16.5. Evaluate the surface integral


S

z2 dS where S is the part of the

sphere x2 + y2 + z2 = 1 which lies inside the cone z =


x2 + y2.



36 MATH 2263 SPRING 2022

17. Flux integral

Problem 17.1. Find


F · dS for F(x, y, z) = 〈y,−x, 2z〉, where S is the hemisphere
x2 + y2 + z2 = 4 (z ≥ 0) oriented downward.

Problem 17.2. Evaluate


S

F · dS where F = −x i+ 2y j− z k and S is the portion

of y = 2x2 + 2z2 that lies behind y = 8 oriented in the positive y-axis direction.
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18. Stokes’ theorem and divergence theorem

Problem 18.1. Use Stokes’ Theorem to evaluate


S

curlF · dS where F = y i− x j+

yx3 k and S is the portion of the sphere of radius 4 with z ≥ 0 with upwards orientation.

Problem 18.2. Use Stokes’ theorem to evaluate

C
F · dr where F(x, y, z) = 〈1, x+

yz, xy −
√
z〉 and C is the boundary of the plane 3x+ 2y + z = 1 in the first octant.
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Problem 18.3. Use divergence theorem to calculate


S
F · dS where F(x, y, z) =

〈3xy2, xez, z3〉 and S is the surface bounded by the cylinder y2 + z2 = 1 and planes
x = −1 and x = 2.
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