Math 2263 Problem Sets

Sylvester W. Zhang

Spring 2022

Contents

1.	Vectors and the Three-Dimensional Space	2
2.	Cross Product, Lines and Planes	4
3.	Multivariable Functions, Limits and Partial Derivatives	7
4.	Chain Rule and Directional Derivatives	9
А.	Additional Problems I	12
5.	Maxima and Minima	13
6.	Lagrange Multipliers	15
7.	Basic Double Integrals	17
8.	More on Double Integrals	18
9.	Double Integral with Polar Coordinates	19
10.	Triple integrals	21
11.	Cylindrical, spherical coordinates, and change of variables.	23
12.	Vector Fields and Line Integral	25
13.	Conservative vector fields and fundamental theorem of path integrals.	28
14.	Green's Theorem	30
15.	Curl and Divergence	31
16.	Parametric surface and surface integrals	33
17.	Flux integral	36
18.	Stokes' theorem and divergence theorem	37
References		39

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA. $\mathit{Email: swzhang@umn.edu}.$

Last updated on November 16, 2022.

1. Vectors and the Three-Dimensional Space

Problem 1.1. Determine if the given three points are co-linear (i.e. lie on one line).

(1) A = (2, 0, -1), B = (1, -1, -2) and C = (-3, 1, 0)

(2) A = (-1, 4, 3), B = (-2, 4, 1) and C = (2, 0, 1)

Problem 1.2. Describe and find the equation of the set of all points that are equidistant to the two points A = (-1, 5, 3) and B = (6, 2, -2).

Problem 1.3. For each of the vectors given below, find a unit vector that has the same direction.

$$\mathbf{v} = \langle 2, 1, -2 \rangle$$
 $\mathbf{w} = \langle -4, 0, 3 \rangle$

Further, find vectors of length 2 with the same direction.

Problem 1.4. In \mathbb{R}^2 , **v** is a unit vector which lies in the first quadrant. Suppose the angle between **v** and the positive *y*-axis is $\pi/4$, find **v** in component form.

Problem 1.5. Let $\mathbf{a} = \langle 2, 1, 1 \rangle$ and $\mathbf{b} = \langle -1, x, 3 \rangle$. Find the value of x such that \mathbf{a} is orthogonal to \mathbf{b} .

2. Cross Product, Lines and Planes

Problem 2.1. Find a non-zero vector that is orthogonal to the plane containing the three points

A = (2, -3, 4) B = (-1, -2, 2) C = (3, 1, -3)

Problem 2.2. Determine whether the following points are co-planer.

$$A = (1,3,2)$$
 $B = (3,-1,6)$ $C = (5,2,0)$ $D = (3,6,-4)$

Problem 2.3. Use equations of lines to determine whether the following three points are colinear.

A = (2, 4, -3) B = (3, -1, 1) C = (1, 9, 1)*Hint:* Find the equation of the line through AB and check if C is on the line. **Problem 2.4.** Find the equation of the plane through A = (2, 4, -3), B = (3, -1, 1), and C = (1, 9, 1).

Problem 2.5. Find the equation of the line through (3, 2, -4) with direction $\langle -1, 2, 5 \rangle$. Find its intersection with the plane from Problem 2.4.

3. Multivariable Functions, Limits and Partial Derivatives

Problem 3.1. Find the domains and level curves of the functions

 $f(x,y) = \sqrt{4 - x^2 - y^2}$ and $f(x,y) = x + \sqrt{y}$,

and sketch their graphs.

Problem 3.2. Find the following limits, or demonstrate if not exists.

(1)
$$\lim_{(x,y)\to(2,-1)} \frac{x^2y + xy^2}{x^2 - y^2}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^4 + y^4}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{5y^2\cos^2 x}{x^4 + y^4}$$

(3)
$$\lim_{(x,y)\to(0,0)} \overline{x^2 + y^2}$$

Problem 3.3. Determine the set of points where the function is continuous. $2r^2 + u$

(1)
$$f(x,y) = \frac{2x^2 + y}{1 - x^2 - y^2}$$

(2) $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2 + xy} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

Problem 3.4. Evaluate the following second partial derivatives.

(1)
$$\frac{\partial^2}{\partial x \partial y} \ln(x+y)$$

(2) $\frac{\partial^2}{\partial x \partial y} e^{xy} \sin(x)$

4. Chain Rule and Directional Derivatives

Problem 4.1. Find dz/dt for $z = \sqrt{xy+1}$, $x = \tan t$ and $y = \arctan(t)$.

Problem 4.2. Find $\partial u/\partial s$ and $\partial u/\partial t$ for $u = ze^{xy}$ x = s + t y = s - t z = st **Problem 4.3.** Find $\partial z/\partial x$ and $\partial z/\partial y$, where $x^2 + 4y^2 + z^2 - 2z = 6$

Problem 4.4. For each function f, find the gradient ∇f and the directional derivative $D_{\mathbf{u}}f$.

(1) $f(x, y, z) = x^2 z + xyz + yz^2, \mathbf{u} = \langle 1, -1, 1 \rangle.$ (2) $f(x, y) = e^x \sin(xy), \mathbf{u} = \langle 2, 1 \rangle.$ (3) $f(x, y, z) = xe^y - y^2 e^{xz}, \mathbf{u} = \langle -1, 0, 2 \rangle.$ **Problem 4.5.** Find the maximal rate of change of $f(x, y, z) = xe^y - y^2e^{xz}$ at the point P(1, 0, -1). In what direction does that occur?

Problem 4.6. Find the tangent plane and normal line to $xy^2 = 2ze^{x+y} + 3$ at (1, -1, -1).

MATH 2263 SPRING 2022

A. Additional Problems I

Problem A.1. Show that the following limits do not exist.

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x \sin y}{y^2}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 y^2}{x^6 + y^4}$$

Problem A.2. Find the limit or show that it doesn't exist. $x^2 - 2xy$

(1)
$$\lim_{(x,y)\to(2,1)}\frac{x^2-2xy}{x^2-4y^2}$$

(2)
$$\lim_{(x,y)\to(0,1)} \frac{y-1}{x^2+y-1}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{x^4y + x^2y^2}{2x^6 + y^3}$$

5. Maxima and Minima

Problem 5.1. Find the local maxima/minima and saddle points of the function.

$$f(x,y) = x^2 + y - 2xy$$
 and $f(x,y) = \frac{x^2 + y^2}{e^x}$

Problem 5.2. Find the shortest distance from the plane x - 2y - z - 3 = 0 to the origin.

Problem 5.3. Find the absolute minima of the function $f(x, y) = x^2 - 4xy + y^2 + 3y$ in the quadrilateral given by the four points (0, 0), (2, 0), (0, 3) and (2, 3).

Problem 5.4. Find the absolute maximum and minimum of the function $f(x, y) = x^2 + 2xy + y$ in the region bounded by $y = 1 - x^2$, y = x - 1, the y-axis and $x \ge 0$.

6. Lagrange Multipliers

Problem 6.1. Find the extreme values of $f(x, y, z) = e^{xyz}$ with constraint $2x^2 + y^2 + z^2 = 24$

Problem 6.2. Find the shortest distance from the plane x - 2y - z - 3 = 0 to the origin. Problem 5.2 once again, this time use Lagrange multiplier.

Problem 6.3. Find the extreme value of $f(x, y, z) = x^2 + y^2 + z^2$ subject to x - y = 1 and $y^2 - z^2 = 1$.

7. Basic Double Integrals

Problem 7.1. Evaluate the following integrals.

(1)
$$\int_{0}^{\pi} \int_{0}^{1} 2x + \sin(y) \, dx \, dy$$

(2) $\int_{1}^{3} \int_{1}^{\frac{1}{3}} \frac{\ln y}{xy} \, dy \, dx$
(3) $\iint_{R} \frac{2xy^{2}}{x^{2}+1} \, dA$, where $R = [0,1] \times [-3,3]$. (i.e. $0 \le x \le 1, -3 \le y \le 3$.)

Problem 7.2. Fill in the boxes so that the following equality holds

$$\int_{0}^{2} \int_{-1}^{x^{2}-1} xy \, dy \, dx = \int_{\Box}^{\Box} \int_{\Box}^{\Box} xy \, dx \, dy.$$

Then evaluate the integral using one of the above.

8. More on Double Integrals

Problem 8.1. Evaluate the following double integrals. π

(1)
$$\int_{0}^{\frac{1}{2}} \int_{0}^{x} x \sin y \, dy \, dx$$

(2) $\iint_{D} e^{y^{2}} \, dA$, where $D = \{(x, y) : 0 \le y \le 1, 0 \le x \le y\}$

Problem 8.2. Evaluate the following integrals. $\int \int dt$

(1)
$$\iint_D (x^2 + 2y) \, dA$$
, where D is bounded by $y = x, y = x^3, x \ge 0$.
(2) $\iint_D (x^2 + 2y) \, dA$, where D is bounded by $y = x, y = x^3, x \ge 0$.

(2) $\iint_D (2x-y) \, dA$, where D is the circle centered at the origin with radius 2.

Problem 8.3. Find the volume of the solid bounded by the cylinders $x^2 + y^2 = r^2$ and $y^2 + z^2 = r^2$.

9. Double Integral with Polar Coordinates

Problem 9.1 (Problems 8.2 (2)). Evaluate $\iint_D (2x - y) \, dA$, where *D* is the circle centered at the origin with radius 2.

Problem 9.2. Find the following integral using polar coordinates.

$$\int_0^a \int_0^{\sqrt{a^2 - y^2}} xy^2 \, dx \, dy$$

Problem 9.3. Find the $\iint_R (x^2 + y^2) dA$ where R is in the first quadrant bounded by $x^2 + y^2 = 1$, $x^2 + y^2 = 9$, y = x and y = 0.

10. Triple integrals

Problem 10.1. Evaluate the integral
$$\int_0^1 \int_y^{2y} \int_0^{x+y} 6xy \ dz \ dx \ dy$$

Problem 10.2. Evaluate the integral $\iiint_E e^{z/y} dV$, where *E* is bounded by $E = \{(x, y, z) | 0 \le y \le 1, y \le x \le 1, 0 \le z \le xy\}.$

Problem 10.3. Evaluate $\iiint_E x^2 dV$ where *E* is the solid bounded by $x^2 + y^2 = 4$, x + z = 2, and z = 0. (Hint: You may use the fact that $\int_0^{2\pi} \cos^3(\theta) d\theta = 0$.)

Problem 10.4. Find the volume of the solid bounded by the cylinders $x^2 + y^2 = r^2$ and $x^2 + z^2 = r^2$. 11. Cylindrical, spherical coordinates, and change of variables.

Problem 11.1. Set up the integral to calculate the volume bounded by the sphere $x^2+y^2+z^2 = 16$ and the cone $z = \sqrt{3(x^2+y^2)}$ using Cartesian coordinates, cylindrical coordinates and spherical coordinates respectively.

Problem 11.2. Rewrite the integral $\iiint_E xe^{x^2+y^2+z^2}dV$ where *E* is the portion of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

Problem 11.3. Evaluate $\iint_R (4x + 8y) dA$ where *R* is the parallelogram wit vertices (-1,3), (1,-3), (3,-1) and (1,5). Use the transformation $x = \frac{1}{4}(u+v)$ and $y = \frac{1}{4}(v-3c)$.

12. Vector Fields and Line Integral

Problem 12.1. Find the gradient vector fields of the following functions and sketch them.

$$f(x,y) = \frac{1}{2}(x^2 - y^2), \quad f(x,y) = (x+y)^2$$

Problem 12.2. Find the gradient vector fields of

$$f(x, y, z) = x^2 y e^{\frac{y}{z}}, \quad f(x, y, z) = z^2 e^{x^2 + 4y} + \ln\left(\frac{xy}{z}\right)$$

Problem 12.3. Compute the line integral $\int_C e^x dx$ where C is the arc of the curve $x = y^3$ from (-1, -1) to (1, 1).

Problem 12.4. Compute the line integral $\int_C y^2 z \, ds$ where C is the line segment from (3, 1, 2) to (1, 2, 5).

Problem 12.5. Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = (x^2 + y) \mathbf{i} + xz \mathbf{j} + (y + z) \mathbf{k}$, and C is given by the function $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} - 2t \mathbf{k}$, $0 \le t \le 2$.

13. Conservative vector fields and fundamental theorem of path integrals.

Problem 13.1. Determine whether or not F is a conservative vector field, and if so, find the function f such that $\mathbf{F} = \nabla f$.

(1) $\mathbf{F}(x,y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$ (2) $\mathbf{F}(x,y) = ye^x\mathbf{i} + (e^x + e^y)\mathbf{j}$

- **Problem 13.2.** Evaluate the following line integrals $\int_C \nabla f \, d\mathbf{r}$. (1) $f(x,y) = x^3 (3-y^2) + 4y$ and C is given by $\mathbf{r}(t) = \langle 3-t^2, 5-t \rangle$ with $-2 \leq 1$ $t \leq 3$
 - (2) $f(x,y) = ye^{x^2-1} + 4x\sqrt{y}$ and C is given by $\mathbf{r}(t) = \langle 1-t, 2t^2-2t \rangle$ with $0 \leq t$ $t \leq 2.$

Problem 13.3. Evaluate $\int_C \mathbf{F} d\mathbf{r}$, where $\mathbf{F}(x, y, z) = (y^2 z + 2xz^2)\mathbf{i} + 2xyz\mathbf{j} + (xy^2 + 2x^2z)\mathbf{k}$ and C is given by $\langle \sqrt{t}, t+1, t^2 \rangle$ with $0 \le t \le 1$.

14. Green's Theorem

Problem 14.1. Evaluate the integral $\int_C y^4 dx + 2xy^3 dy$ where C is the ellipse $x^2 + 2y^2 = 2$ oriented positively.

Problem 14.2. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (x^2 + y) \mathbf{i} + (2x - y^2) \mathbf{j}$ and C is a positively oriented circle given by $(x - 2)^2 + (y - 7)^2 = 4$.

Problem 14.3. Find the area of the polar curve $r = 1 - \cos \theta$. (Use calculator.)

15. Curl and Divergence

Problem 15.1. Find the curl and divergence of the vector fields.

- (1) $\mathbf{F}(x, y, z) = \sin(yz) \mathbf{i} + \sin(xz) \mathbf{j} + \sin(xy) \mathbf{k}$ (2) $\mathbf{F}(x, y, z) = xyz^4 \mathbf{i} + x^2z^4 \mathbf{j} + 4x^2yz^3 \mathbf{k}$

Problem 15.2. Show that $\mathbf{F} = \langle ye^{xy} + yz + z, x(e^{xy} + z) - z\sin(yz), xy + x - y\sin(yz) \rangle$ is a conservative vector field and find the function f such that $\mathbf{F} = \nabla f$.

Problem 16.1. Find a parametrization for the following surfaces.

- (1) The plane that passes through the point (0, -1, 5) and contains the vectors (2, 1, 4) and (-3, 2, 1).
- (2) The part of the ellipsoid $x^2 + 4y^2 + 9z^2 = 1$ which lies to the left of *xz*-plane. (3) The parts of the plane x + 2y + z = 1 which lies inside the cylinder $x^2 + y^2 = 1$.

Problem 16.2. Find the tangent plane to surfaces $\mathbf{r}(u, v) = (u^2 + 1)\mathbf{i} + (v^3 + 1)\mathbf{j} + (v^3 + 1)\mathbf{j}$ $(u+v)\mathbf{k}$ at (5,2,3).

Problem 16.3. Evaluate the surface integral $\iint_{S} (x^2 + y^2) \, dS$, where S is given by $\mathbf{r}(u, v) = \langle 2uv, u^2 - v^2, u^2 + v^2 \rangle, \, u^2 + v^2 \leq 1.$

Problem 16.4. Find the surface area of part of the sphere $x^2 + y^2 + z^2 = 4$ which lies inside the cylinder $x^2 + y^2 = 2x$.

Problem 16.5. Evaluate the surface integral $\iint_S z^2 dS$ where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ which lies inside the cone $z = \sqrt{x^2 + y^2}$.

17. Flux integral

Problem 17.1. Find $\iint \mathbf{F} \cdot d\mathbf{S}$ for $\mathbf{F}(x, y, z) = \langle y, -x, 2z \rangle$, where S is the hemisphere $x^2 + y^2 + z^2 = 4$ ($z \ge 0$) oriented downward.

Problem 17.2. Evaluate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = -x \mathbf{i} + 2y \mathbf{j} - z \mathbf{k}$ and S is the portion of $y = 2x^2 + 2z^2$ that lies behind y = 8 oriented in the positive y-axis direction.

Problem 18.1. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = y \mathbf{i} - x \mathbf{j} + yx^3 \mathbf{k}$ and S is the portion of the sphere of radius 4 with $z \ge 0$ with upwards orientation.

Problem 18.2. Use Stokes' theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle 1, x + yz, xy - \sqrt{z} \rangle$ and C is the boundary of the plane 3x + 2y + z = 1 in the first octant.

Problem 18.3. Use divergence theorem to calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = \langle 3xy^2, xe^z, z^3 \rangle$ and S is the surface bounded by the cylinder $y^2 + z^2 = 1$ and planes x = -1 and x = 2.

References

- James Stewart, Daniel K Clegg, and Saleem Watson, (2020) Calculus: early transcendentals, Cengage Learning
- [2] Paul Dawkins (2003) Paul's Online Notes Calculus III, https://tutorial.math.lamar.edu/GetFile. aspx?file=B,11,N