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Cluster Algebras

• Cluster algebras, introduced by Fomin and Zelevinsky in 2001,
are families of commutative algebras with additional
combinatorial structures.

• Elements in a cluster algebra, called cluster variables, are grouped
into tuples of equal cardinality, called clusters. Two clusters with
one different entry are linked by a mutation.

• A cluster algebra is generated from an initial cluster along with a
mutation rule, often via the help of a quiver — a directed graph
with no loops and two cycles.



Cluster Algebras

Definition (Fomin-Zelevinsky 2001)
• Fix an integer n. A cluster algebra A is a subring of R(x1, · · · , xn).
• The ordered tuple (x1, · · · , xn) is called the initial cluster.
• A seed is a pair (X,Q) where X is a cluster and Q is a quiver –

directed graph with n vertices which corresponds to n elements
in a cluster.

• We obtain new clusters from old ones by mutations, denoted by
µi for i ∈ [n], as follows(
{· · · , xi−1, xi, xi+1, · · · },Q

) µi−→
(
{· · · , xi−1, x′i , xi+1, · · · },Q′

)
where

xix′i =
∏
i→j

xj +
∏
j→i

xj

The new quiver Q′ is obtained by quiver mutation, defined in the
next slide.

• Starting from the initial cluster, performing mutations at all
possible directions generates the whole cluster algebra.



Cluster Algebras

Definition (Quiver Mutation)

The new quiver Q′ = µi (Q) is obtain as follows.
1 For every 2-path j→ i→ k in Q, add an arrow j→ k,
2 reverse all arrows incident to i,
3 remove every new 2-cycles.

Example

x1 x2

x3

x1 x2

x3

x1 x2

x3

x′1 x2

x3

Step 0 Step 1 Step 2 Step 3

The new cluster variable is: x′1 =
x2

2 + x2
3

x1
.



Decorated Teichmüller Theory

Roughly speaking, the Teichmüller space of a surface F = Fs
g is

T(F) = the set of hyperbolic structures on F/isotopy.

Definition
Consider a smooth oriented surface F = Fs

g with genus g ≥ 0,
punctures s ≥ 0 and no smooth boundary components. Define the
Teichmüller space of F to be the quotient space

T(F) = Hom (π1(F),PSL(2,R))
/

PSL(2,R)

Definition (Penner)
For any punctured surface F = Fs

g with s > 0, the decorated Teichmüller
space of F is the trivial Rs

>0-bundle over T(F), denoted T̃(F).



Decorated Teichmüller Theory

The Poincaré disk, a model of hyperbolic plane, is defined to be

D := {z = x + yi ∈ C : |z| < 1}, with metric ds = 2
√

dx2+dy2

1−|z|2 .

Definition (λ-length via horocycles)

h1

h2
δ

A horocycle is a smooth curve in the hyperbolic
plane with constant geodesic curvature 1. In D,
it’s a Euclidean circle tangent to an infinite
point, which is the center.
For a pair of horocycles h1, h2, the λ-length
between them is

λ(h1, h2) = eδ/2

where δ is the hyperbolic distance between the
two intersections.

In other words, a decoration is a collection of horocycles above each
ideal points.



Ptolemy Relations

Given a quadruple of horocycles with distinct centers (decorated
ideal quadrilateral), one has the Ptolemy transformation (flipping of
diagonals).

a b

cd

e

a b

cd

f

Figure: Ptolemy transformation

where
ef = ac + bd



Ptolemy Relations are Cluster Mutations

Throughout the rest of the paper, let F be a disk with marked points
on its boundary (a ‘cyclic’ polygon).

Associate a quiver to each triangle — draw a vertex for each edge and
a triangular quiver to each triangle. The Ptolemy transformation
on λ-lengths turns out to be the same as cluster mutations.

The exchange relations are exactly the same as Ptolemy relation
ef = ac + bd, and quiver mutation is the same as flipping diagonals.
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Superalgebras

A superalgebra is a Z2-graded algebra: A = A0 ⊕ A1, with a
multiplication A× A→ A such that AiAj ⊂ Aij (i, j ∈ Z2).

A0 is a commutative algebra itself, which we call the bosonic or even
part of A.

A1 is an A0-bimodule, containing elements which anti-commutes. We
call it fermionic or odd.

Example

The algebra A generated by x1, · · · , xn, θ1, · · · , θm, subject to the
following relations

xixj = xjxi xiθj = θjxi θiθj = −θjθi

is a superalgebra. Here A0 is spanned by monomials with even
number of θ’s and A1 is spanned by monomials with odd number of
θ’s.
E.g. x1x2 + x1θ1θ3 + x2θ1θ2θ3θ4 ∈ A0, x1θ1θ2θ3 + x1x4θ2 ∈ A1



Decorated Super-Teichmüller Spaces

• By replacing PSL(2,R) with OSp(1|2), we define the
super-Teichmüller space of a surface F to be

ST(F) = Hom(π1(F),OSp(1|2))/OSp(1|2)

• Similar to the bosonic case, the decorated space is encoded by a
collection of horocycles centered at each ideal points, which
leads to the definition of super λ-length.

• But unlike the bosonic case, we need additional invariants to
accommodate for the extra degree of freedom coming from the
odd dimension.

• Associate an odd variable to each triangle (triple of ideal points),
called the µ-invariants.



Spin Structures

Components of ST(F) are indexed by the set of spin structures on F.

Cimasoni-Reshetikhin formulated the set of spin structures of F in
terms of the set of isomorphism classes of Kasteleyn orientations of a
fatgraph spine of F.

Dual to this formulation, we consider the set of spin structures on F
to be the set of equivalence classes of orientations on triangulations of
F of the following equivalence relation.

εa

εbεc θ ∼

−εa

−εb−εc −θ

where εa, εb, εc are orientations on the edges, and θ is the µ-invariant
associated to the triangle.



Super Ptolemy Relation

The Ptolemy transformation on super λ-length coordinates is given
as follows.

a b

cd

e
θ

σ

a b

cd

f

θ′ σ′

ef = ac + bd +
√

abcdσθ

σ′ =
σ
√

bd− θ
√

ac√
ac + bd

and θ′ =
θ
√

bd + σ
√

ac√
ac + bd

σθ = σ′θ′



Super Ptolemy Relation

Super-flip reverse the orientation of the edge b.

εa εb

εcεd

θ

σ

εa −εb

εcεd

θ′ σ′

Remark
• Super Ptolemy moves are not involution: µ8

i = I.
• The odd-degree-0 terms of a super λ-length are exactly the

(ordinary) λ-length in the bosonic decorated space.



Super Ptolemy Relation

If we flip a diagonal twice:

εa εb

εcεd

θ

σ

εa −εb

εcεd

θ′ σ′

−εa −εb

εcεd

−θ

σ

The orientations of the triangle θ are reversed and θ is changed to −θ.



Super Ptolemy Relation - Example

a b

c

d

e
x1 x2

θ1
θ2

θ3

Start with a Pentagon with given
orientation.

The boundary orientations are ignored,
because they are irrelevant in the
calculations.

What is λ2,3?

We first flip the edge x1.



Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e
x3 x2

θ4

θ5

θ3

After flipping x1 to x3, we get:

x3 =
ad + ex2

x1
+

√
adex2

x1
θ1θ2

θ4 =

√
ad θ1 −

√
ex2 θ2√

x1x3

θ5 =

√
ad θ2 +

√
ex2 θ1√

x1x3

Here the red color indicates that the
orientation has been reversed.

Next we flip x2.



Super Ptolemy Relation - Example

a b

c

d

e
x3

x4

θ4

θ7

θ6

After flipping x2 to x4, we have:

x4 =
ac + bx3

x2
+

√
acbx3

x2
θ5θ3

x4 =
acx1 + abd + bex2

x1x2
+

b
√

adex2

x1x2
θ1θ2+

x4 =

√
acb
(

ad+ex2
x1

+

√
adex2
x1

θ1θ2

)
x2

(√
ad θ2 +

√
ex2 θ1√

x1x3

)
θ3

x4 =
acx1

x1x2
+

abd
x1x2

+
bex2

x1x2
+

b
√

ade
x1
√

x2
θ1θ2+

x4 =
a
√

bcd√
x1x2

θ2θ3 +

√
abcd√
x1x2

θ1θ3



Main Question

In a cluster algebra A, any cluster variable can be expressed as a
positive Laurent polynomial in the initial cluster, i.e.

A ⊂ R[x±1
1 , · · · , x±1

n ].

Questions
• Does the super λ-length satisfy some Laurent phenomenon?
• Is there a “positivity” for terms with anti-commuting variables?

Answers (Spoiler Alert)

• Super λ-lengths live in R[x±
1
2

1 , · · · , x±
1
2

1 |θ1, · · · , θn+1].
• There exists an ordering on the odd variables, called positive

ordering, such that if we multiply θ’s in the positive ordering then
the coefficients are positive.
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Schiffler’s T-paths

Consider the graph T coming from a triangulated polygon.

A T-path from i to j is a path in T starting at vertex i, ending at j, such
that

(T1) the path does not use any edge twice
(T2) the path has an odd number of edges
(T3) the even-numbered edges cross the diagonal (i, j)
(T4) The intersections of the path and (i, j) move from progressively i

to j.

Let Tij denote the set of T-paths from i to j.

For a T-path γ = (x1, x2, · · · ), define it’s weight to be

wt(γ) =
∏
i odd

λ(xi)
∏

i even

λ(xi)
−1

where λ(xi) denote the λ-length of the edge xi.



Schiffler’s T-path

Theorem (Schiffler)

λ(xi,j) =
∑
t∈Ti,j

wt(t)

Here are all the T-paths in T25. (odd steps are blue and even steps are
red)

1

2

3 4

5

x23x15
x13

1

2

3 4

5

x12x34x15
x13x14

1

2

3 4

5

x12x45
x14

λ(x2,5) =
∑
t∈T25

wt(t) =
x23x15

x13
+

x12x34x15

x13x14
+

x12x45

x14



Outline

1 Motivation

2 Cluster Algebras and Decorated Teichmüller Theory

3 Decorated Super-Teichmüller Spaces

4 Schiffler’s T-paths

5 Main Result: Super T-paths

6 Super Frieze Patterns and Cluster Superalgebras



Super T-paths

From now on we only consider triangulations with a longest arc
crossing all internal diagonals.

In other words, every triangle has a boundary edge. Call the end
points of the longest arc a and b.

a

b



Fan Decomposition

a

b

c2

c4

c1

c3

For a triangulation T, we will define a
canonical fan decomposition.

The arc (a, b) intersect with internal
diagonals, and create smaller triangles
(colored yellow).

Vertices of these yellow triangles are
called fan centers, denoted c1, · · · , cn,
ordered by their distance from a. And we
further denote a = c0 and b = cn+1.

The sub-triangulation bounded by
ci−1, ci, ci+1 is called the i-th fan segment
of T.



Default Orientation and Positive Ordering

c0

c2

c4 c5

c3

c1

α1
α2

α3

β1

β2

γ1

γ2

γ3

δ1

δ2

Define a default orientation on the interior
diagonals.

• Edges inside each fan segments are
directed away from the center.
• Others are oriented as

c1 → c2 → · · · → cn.

Define a positive ordering on µ-invariants.
• µ-invariants in a fan are ordered

counterclockwise around the center.
• “Alternate” across the fans.

α1 > α2 > α3 > γ1 > γ2 > γ3 > δ2 > δ1 > β2 > β1



The Auxiliary Graph

a = c0

c2

c4 c5 = b

c3

c1

For each triangle in T, we place an
internal vertex.

The internal vertices are connected to the
nearest fan centers by σ-edges. The
σ-edges are considered to cross the arc
(a, b).

Every pair of internal vertices are
connected by a teleportation, called a
τ -edge. (Note that the τ -edges are drawn
to be overlapping.)

The resulting graph Γa,b
T is the auxiliary

graph associated to {T, a, b}.



Super T-paths

Finally, we define super T-paths to be paths on the auxiliary graph
such that:

(T1) the path does not use any edge twice.
(T2) the path has an odd number of edges.
(T3) the even-numbered edges cross the diagonal (a, b).
(T4) The intersections of the path and (a, b) move from progressively

a to b.
(T5) σ-edges must be even and τ -edges must be odd.

Let T̃a,b denote the set of super T-path on Γa,b
T .

Note that, every ordinary T-path is also a super T-path: Ta,b ⊂ T̃a,b



Super T-paths: Examples

c0

c2

c4 c5

c3

c1

c0

c2

c4 c5

c3

c1

c0

c2

c4 c5

c3

c1



Weights of Super T-paths

If a super T-path uses edges t1, t2, . . . , we define its weight as follows.

• If ti is a diagonal in the triangulation, then:
wt(ti) = λ(ti) if i odd, and
wt(ti) = λ(ti)

−1 if t is even.
• If ti is a τ -edge, then wt(ti) = 1

• If ti is a σ-edge, then wt(ti) = θ̃ :=
√

z
xy θ. Here x, y, z are

λ-lengths and θ is the µ-invariant.

θ
ti

yx

z

If t is a super T-path with edges t1, t2, . . . , define wt(t) =
∏

i wt(ti).
Here the product is take under the positive ordering.



Main Theorem

Theorem (Musiker-Ovenhouse-Z. 2021)

Under default orientation, the super λ-length of the arc (a, b) (assuming to
be the longest arc in T) is given by:

λ(a, b) =
∑

t∈T̃a,b

wt(t)

With the following lemma, we can apply the main theorem for
triangulations with arbitrary orientation.

Lemma (Musiker-Ovenhouse-Z. 2021)
In the equivalence class of any spin structure, there exists (at least) a default
orientation.



Formula for λ-lengths: Example

a b

c

d

e
x1 x2

θ1
θ2

θ3
θ1 > θ2 > θ3

be
x1

abd
x1x2

ac
x2

ab
√

e
ax1
θ1

√
d

x1x2
θ2 ab

√
e

ax1
θ1

√
c

bx2
θ3 ab

√
d

x1x2
θ2

√
c

bx2
θ3



Formula for µ-invariants

Theorem (Musiker-Ovenhouse-Z. 2021)
Let T be a triangulation with a = c0, c1, · · · , cn+1 = b its fan centers. Let Θ

denote the set of all internal vertices in Γa,b
T . Then√

λ(a, b)λ(b, c1)

λ(a, c1)
abc1 =

∑
θ∈Θ

wt{‘partial’ super T-path from a to θ}

Here wt means the weighted sum, and a partial super T-path satisfies all
axioms except having even number of edges.

Remark
Note that the above theorem only covers a special family of triangles.
The µ-invariants themselves don’t have simple expansions, because

the λ-lengths in the term
√

λ(a,b)λ(b,c1)
λ(a,c1)

are not always in the
triangulation.



Formula for µ-invariants: Example

1

2

3 4

5

a b

c

d

e
x1 x2

θ1
θ2

θ3

a
√

e
ax1
θ1 a

√
d

x1x2
θ2 a

√
c

bx2
θ3

√
bλ25

a
125 =

√
ae
x1
θ1 +

a
√

d
√

x1x2
θ2 +

a
√

c√
bx2

θ3



Proof Sketch - Three Steps

• We first prove our Theorems for single-fan triangulations.
• Next we prove in the case of zig-zag triangulations.
• Finally we prove in full generality by combining the above two

cases using the following sequence of flips.
a = c0

c2

c4

b = c6

c5

c3

c1

T

=⇒

a = c0
2

3

c2

c4

b = c6

c5

c3

c1

T′



Proof Sketch - Double Helix Induction

12

4

6

n− 2

n n− 1

7

5

3

θ1
θ2

θ3

θ4

θ5

12n
√

λ1nλ2n
λ12

= 23n
√

λ3nλ2n
λ23︸ ︷︷ ︸

1st term

+ 123
√

λ13
λ12λ23

λ2n︸ ︷︷ ︸
2nd term

1st term: (by induction hypothesis) all partial
super T-path starting from n and ending at one
of θ2, θ3, · · · .

2nd term: all complete super T-path from n to 2
plus an σ-edge to θ1.

1st + 2nd: partial super T-paths from n to one of
θ1, θ2, θ3, · · · .



Proof Sketch - Double Helix Induction

12

4

6

n− 2

n n− 1

7

5

3

θ1
θ2

θ3

θ4

θ5

λ1n = λ12λ3n
λ23︸ ︷︷ ︸

part 1

+ λ13λ2n
λ23︸ ︷︷ ︸

part 2

−
√

λ12λ13
λ23

123 ·
√

λ2nλ3n
λ23

23n︸ ︷︷ ︸
part 3

part 1: T̃1,n whose first two steps are (1, 2) and
(2, 3).

part 2: T̃1,n whose first step is (1, 3).

part 1+2: T̃1,n with out using θ1 = 123 .

part 3: By induction hypothesis of 23n , part 3
has all super T-path from 1 to n which used θ1.

part 1+2+3: Together gives all super T-path from
1 to n.
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Superfriezes

Supersymmetric frieze patterns are introduced by Morier-Genoud,
Ovsienko, and Tabachnikov. They are the following array of numbers



Super Diamond

A super frieze is built up by super diamonds as follows.

B
Ξ Ψ

A D
Φ Σ

C

Every super diamond is a matrix in OSp(1|2), satisfying the following
frieze rules:

AD− BC = 1 + ΣΞ

AΣ− CΞ = Φ

BΣ−DΞ = Ψ

BΦ− AΨ = Ξ

DΦ− CΨ = Σ

ΣΞ = ΨΦ



Super Diamonds as Ptolemy Relations

Consider quadrilateral flip as follows where two of the edges have
length 1.

1 b

1d

e
θ

σ

1 b

1d

f

θ′ σ′

The Ptolemy relation is equivalent to the superfrieze relation of the
following diamond:

b
θ
√

be σ′
√

bf
e f

σ
√

ed θ′
√

df
d

Set θ̃ = θ
√

be, σ̃ = σ
√

ed, θ̃′ = θ′
√

df , and σ̃′ = σ′
√

bf .



Superfriezes from a marked disk

As a corollary of the previous slide, we have

Theorem (Musiker-Ovenhouse-Z. 2021)
Every (finite) superfrieze pattern come from the super λ-lengths and
µ-invariants of a marked disk.

1
ξ1

x1

ξ2

x2

. . .

xn

ξn+1

1

21

n + 3

n + 2

5

4

3ξn+1

ξ1

ξ2

ξ3

x3

x2xn

x1



Relation to Ovsienko-Shapiro Cluster Algebra

Ovsienko and Shapiro [OS18] proposed a Cluster superalgebra using
extended quivers.

For every super diamond, associate an extended quiver:

b
θ̃ σ̃′

e f
σ̃ θ̃′

d
b e d

θ̃ θ̃′

Note that θ̃ and θ̃′ are not in the same triangulation!

Question

Can we add odd mutations σ̃ → θ̃′ and θ̃ → σ̃′, turning the extended
quiver mutation into Ptolemy transformation?



Thank you!

Special thanks to Nick for sharing the LATEX source code from his
MSU talk!



Thank You!
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