1. How many elements in the symmetric group Σ_6 have order 6?

2. Let D_{2n} be the dihedral group with $2n$ elements:

 $$D_{2n} = \langle a, b \mid a^n = e, b^2 = e, bab = a^{-1} \rangle$$

 Find necessary and sufficient conditions on an integer k so that the two reflections b and ba^k generate the whole group: every element in D_{2n} can be obtained by multiplying together copies of b and ba^k in some order.

3. Find all possible values of x which are solutions to the following equations in modular arithmetic:

 (a) $x^2 = 1$ in $\mathbb{Z}/5$.
 (b) $x^2 = -1$ in $\mathbb{Z}/5$.
 (c) $x^2 + x + 1 = 0$ in $\mathbb{Z}/7$.
 (d) $x^3 + x^2 - 2x - 1 = 0$ in $\mathbb{Z}/13$.

4. For which prime numbers p is the matrix

 $$\begin{bmatrix}
 1 & 1 & 2 \\
 1 & 2 & 3 \\
 2 & 3 & 47 \\
 \end{bmatrix}$$

 an element of $GL_3(\mathbb{Z}/p)$?

5. Let F be a field and V a finite-dimensional vector space over F. The dual space of V, called V^*, is the set of linear transformations $T : V \rightarrow F$. We define addition and scalar multiplication on V^* as follows:

 (a) $(T_1 + T_2)(v) = T_1(v) + T_2(v)$
 (b) $(a \cdot T)(v) = a(T(v))$

 Show that these rules make V^* into a vector space over F, of the same dimension as V.