Math 8301, Manifolds and Topology
Homework 3
Due in-class on Friday, Sep 26

1. Recall that the standard two-simplex Δ^{2} is the subspace

$$
\left\{\left(t_{0}, t_{1}, t_{2}\right) \in \mathbb{R}^{3} \mid t_{i} \geq 0, \Sigma t_{i}=1\right\}
$$

If X is a space with points p, q, and r, α is a path from p to q, β is a path from q to r, and γ is a path from p to r, show that the path composite $\alpha * \beta$ is homotopic to γ if and only if there is a continuous map $\sigma: \Delta^{2} \rightarrow X$ such that $\sigma(1-t, t, 0)=\alpha(t), \sigma(0,1-t, t)=\beta(t)$, and $\sigma(1-t, 0, t)=\gamma(t)$.
2. Using the previous exercise, show that if $K:[0,1] \times[0,1] \rightarrow X$ is a continuous map, and we define

$$
\begin{aligned}
\alpha(t) & =K(t, 0), & \beta(t) & =K(1, t), \\
\gamma(t) & =K(0, t), & \delta(t) & =K(t, 1)
\end{aligned}
$$

then $\alpha * \beta$ is homotopic to $\gamma * \delta$.
3. Suppose that a topological space X has a function $m: X \times X \rightarrow X$. Show that if α and β are any paths in X, the definition

$$
(\alpha \cdot \beta)(t)=m(\alpha(t), \beta(t))
$$

is homotopy invariant, in the sense that $[\alpha] *[\beta]=[\alpha * \beta]$ is well-defined on homotopy classes of paths.
4. Show that the product of the previous problem satisfies an interchange law

$$
(\alpha \cdot \beta) *(\gamma \cdot \delta)=(\alpha * \gamma) \cdot(\beta * \delta)
$$

whenever the left-hand side is defined.
5. ("Don't worry about space-filling curves") Suppose M is a n-dimensional manifold and that $\gamma:[0,1] \rightarrow M$ is a path in M. Show that there is a homotopic path $\gamma^{\prime} \sim \gamma$ and an integer N satisfying the following: for all $0 \leq k<N$, there is an open set $U_{k} \subset M$ and a homeomorphism ϕ_{k} from U_{k} to an open disc in \mathbb{R}^{n} such that

- $\gamma^{\prime}([k / N,(k+1) / N]) \subset U_{k}$ and
- the composite function $\phi_{k} \circ \gamma^{\prime}:[k / N,(k+1) / N] \rightarrow \mathbb{R}^{n}$ is linear.

