1. Show that the fundamental group of the \(n \)-sphere \(S^n \) is trivial for \(n > 1 \) by directly showing that any loop \(\gamma \) is homotopic to the trivial loop.

2. Now give a proof of the same using the Seifert-Van Kampen theorem.

3. Suppose \(f(z) \) is a monic polynomial \(z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) whose coefficients are complex numbers. Recall \(S^1 = \{ w \in \mathbb{C} \mid |w| = 1 \} \). Show that there is a sufficiently large real number \(R > 0 \) such that

 (a) \(f(z) \neq 0 \) when \(|z| = R \), and

 (b) the resulting function \(S^1 \to \mathbb{C} \setminus \{ 0 \} \), given by \(w \mapsto f(Rw) \), is homotopic to the map \(w \mapsto (Rw)^n \).

4. Suppose you are given a simplicial complex with a finite set \(V \) of vertices and set \(F \) of faces. Let \(X \) be the space you get by realizing this simplicial complex. For definiteness, we’ll let \(V \) be the vector space with basis \(V \), and define

\[
X = \bigcup_{U \in F} \left\{ \sum_{v \in U} t_v \cdot v \mid t_v \geq 0, \sum t_v = 1 \right\} \subset V.
\]

Show that none of the faces of dimension 3 or greater have any effect on the fundamental group: you can put them in or take them of \(F \) without changing \(\pi_1 \). (This is also true if the set is infinite.)

5. A \textit{graph} is a simplicial complex with only vertices and edges, i.e. where no faces have dimension higher than one. A \textit{tree} is a graph, with at least one vertex, such that for any vertices \(p \neq q \), there exists a \textit{unique} sequence \(e_1, e_2, \cdots, e_n \) of edges such that

 (a) \(e_i \neq e_j \) for \(i \neq j \),

 (b) \(e_i \) and \(e_{i+1} \) always share a common vertex,

 (c) \(p \) is a vertex of \(e_1 \), and

 (d) \(q \) is a vertex of \(e_n \).
Show that any tree gives rise to a space with trivial fundamental group. (If you want, you can instead show the stronger statement that this space is contractible.)