Math 8301, Manifolds and Topology

Homework 9
Due in-class on Monday, Nov 24 (I will be away on the 21st)

1. Write out a proof of the following half of the four-lemma. Suppose we have a commutative diagram

such that α and γ are surjective, δ is injective, and the rows are exact. Show that β is surjective.
2. Suppose $(\mathcal{V}, \mathcal{F})$ and $\left(\mathcal{V}^{\prime}, \mathcal{F}^{\prime}\right)$ are simplicial complexes. A map of simplicial complexes is a function $f: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ such that, for all $S \in \mathcal{F}$, the set

$$
f(S)=\{f(s) \mid s \in S\} \subset \mathcal{V}^{\prime}
$$

is in \mathcal{F}^{\prime}. Show that this definition makes simplicial complexes into a category, and that geometric realization is a functor from simplicial complexes to spaces.
3. Show that homology is a functor on simplicial complexes: a map of simplicial complexes $X \rightarrow Y$ gives well-defined maps $H_{n}(X) \rightarrow H_{n}(Y)$ on simplicial homology groups. (Warning: You need to somehow account for the fact that the map may not be one-to-one on vertices.)
4. A Δ-complex (or, sometimes, a semisimplicial complex) consists of a sequence of sets $\left(X_{n}\right)_{n \in \mathbb{N}}\left(X_{n}\right.$ is the set of n-simplices $)$, together with functions

$$
d_{n}^{i}: X_{n} \rightarrow X_{n-1}
$$

for $0 \leq i \leq n$ (which takes an n-simplex to an ($n-1$)-simplex, obtained by deleting the i 'th vertex). These are required to satisfy the relations

$$
d_{n-1}^{i} d_{n}^{j}=d_{n-1}^{j-1} d_{n}^{i}
$$

whenever $i<j$. (This expresses that the two possible orders for deleting vertices i and j coincide.)
(a) Prove that a simplicial complex $(\mathcal{V}, \mathcal{F})$, together with a chosen total order on \mathcal{V}, determines a Δ-complex.
(b) Give, explicitly, a Δ-complex corresponding to a Klein bottle with $\left|X_{0}\right|=1,\left|X_{1}\right|=3,\left|X_{2}\right|=2$, and $\left|X_{n}\right|=0$ for $n>2$.
5. A simplicial complex $(\mathcal{V}, \mathcal{F})$ is locally finite if, for all vertices $v \in \mathcal{V}$, there are only finitely many faces $\sigma \in \mathcal{F}$ containing v. In this circumstance, show that you can define groups $C_{n}^{B M}$ whose elements are arbitrary sums of n-simplices, together with boundary operators $\partial: C_{n}^{B M} \rightarrow C_{n-1}^{B M}$ satisfying $\partial \circ \partial=0$. Calculate the associated homology groups $H_{n}^{B M}$ for a triangulation of \mathbb{R}. (These groups are called the Borel-Moore homology groups.)

