Math 8301, Manifolds and Topology Homework 9 Due in-class on **Monday, Nov 24** (I will be away on the 21st)

1. Write out a proof of the following half of the *four-lemma*. Suppose we have a commutative diagram

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B & \stackrel{g}{\longrightarrow} C & \stackrel{h}{\longrightarrow} D \\ \alpha & & & & & \\ \alpha & & & & & \\ A' & \stackrel{g}{\longrightarrow} B' & \stackrel{\gamma}{\longrightarrow} C' & \stackrel{\delta}{\longrightarrow} D' \\ A' & \stackrel{f'}{\longrightarrow} B' & \stackrel{g'}{\longrightarrow} C' & \stackrel{h'}{\longrightarrow} D' \end{array}$$

such that α and γ are surjective, δ is injective, and the rows are exact. Show that β is surjective.

2. Suppose $(\mathcal{V}, \mathcal{F})$ and $(\mathcal{V}', \mathcal{F}')$ are simplicial complexes. A map of simplicial complexes is a function $f : \mathcal{V} \to \mathcal{V}'$ such that, for all $S \in \mathcal{F}$, the set

$$f(S) = \{f(s) \mid s \in S\} \subset \mathcal{V}'$$

is in \mathcal{F}' . Show that this definition makes simplicial complexes into a category, and that geometric realization is a functor from simplicial complexes to spaces.

- 3. Show that homology is a functor on simplicial complexes: a map of simplicial complexes $X \to Y$ gives well-defined maps $H_n(X) \to H_n(Y)$ on simplicial homology groups. (Warning: You need to somehow account for the fact that the map may not be one-to-one on vertices.)
- 4. A Δ -complex (or, sometimes, a *semisimplicial complex*) consists of a sequence of sets $(X_n)_{n \in \mathbb{N}}$ (X_n is the set of *n*-simplices), together with functions

$$d_n^i: X_n \to X_{n-1}$$

for $0 \le i \le n$ (which takes an *n*-simplex to an (n-1)-simplex, obtained by deleting the *i*'th vertex). These are required to satisfy the relations

$$d_{n-1}^{i}d_{n}^{j} = d_{n-1}^{j-1}d_{n}^{i}$$

whenever i < j. (This expresses that the two possible orders for deleting vertices i and j coincide.)

(a) Prove that a simplicial complex $(\mathcal{V}, \mathcal{F})$, together with a chosen *total* order on \mathcal{V} , determines a Δ -complex.

(b) Give, explicitly, a Δ -complex corresponding to a Klein bottle with $|X_0| = 1$, $|X_1| = 3$, $|X_2| = 2$, and $|X_n| = 0$ for n > 2.

5. A simplicial complex $(\mathcal{V}, \mathcal{F})$ is *locally finite* if, for all vertices $v \in \mathcal{V}$, there are only finitely many faces $\sigma \in \mathcal{F}$ containing v. In this circumstance, show that you can define groups C_n^{BM} whose elements are *arbitrary* sums of *n*-simplices, together with boundary operators $\partial : C_n^{BM} \to C_{n-1}^{BM}$ satisfying $\partial \circ \partial = 0$. Calculate the associated homology groups H_n^{BM} for a triangulation of \mathbb{R} . (These groups are called the *Borel-Moore* homology groups.)