1. Quickies.

- Show that the Hurewicz map \(\pi_n(X, x) \to \tilde{H}_n(X) \cong H_n(X, x) \) is a group homomorphism for \(n > 0 \). (Hint: Consider the effect on homology of the pinch map \(S^n \to S^n \vee S^n \).

- Prove the lemma mentioned in class: If \(A \) is a set with two binary operations \(\ast, \circ \) that have the same identity element \(e \in A \) and satisfy an interchange law
 \[(a \ast b) \circ (c \ast d) = (a \circ c) \ast (b \circ d),\]
 show that \(\ast = \circ \) and that \(a \ast b = b \ast a \) for all \(a, b \in A \).

2. Suppose that a group \(G \) acts properly discontinuously on a space \(Y \) on the left, and suppose that \(A, B \) are discrete sets with right actions of \(G \).

We can construct a space
\[A \times_G Y = A \times Y/\{(ag, y) \sim (a, gy) \mid g \in G\}. \]
and similarly for \(B \). Suppose \(f : A \to B \) satisfies \(f(ag) = f(a)g \) for all \(a \in A, g \in G \). Show that there is an induced covering map \(A \times_G Y \to B \times_G Y \).

Give an explicit description of the preimage of a point of \(B \times_G Y \).

3. A fiber bundle with fiber \(F \) is a map \(p : E \to B \) of spaces such that, for every \(b \in B \), there exists a neighborhood \(U \) of \(b \) and a homeomorphism \(\phi : U \times F \to p^{-1}U \) such that \(p\phi(u, f) = u \) for all \((u, f) \in U \times F \).

Show that fiber bundles have a disc lifting property, as follows. Let \(D^{n-1} \subset D^n = [0, 1]^n \) be the “cap”, consisting of the union of all faces but one. Suppose that we have a map \(g : D^n \to B \) which has a chosen lift on the cap \(\tilde{g} : D^{n-1} \to E \). Show that there exists an extension (not necessarily unique) to a lift \(\tilde{g} : D^n \to E \). (Hint: Subdivide, and use induction on \(n \).)

4. In this exercise, we will show some “exactness” properties of the long exact sequence in homotopy in low degrees. Recall that \(\pi_1(X, A, x) \) is acted on by the group \(\pi_1(X, x) \) by path composition: if \(\gamma \) is a loop based at \(x \) and \(\lambda \) is a path starting at \(x \) and ending in \(A \), we can form the composition \(\gamma \lambda \).

In particular, the image of \(\gamma \) in \(\pi_1(X, A, x) \) is \(\gamma \) times the trivial element.

Show that two elements \(\gamma, \gamma' \) of \(\pi_1(X, x) \) have the same image in \(\pi_1(X, A, x) \) if and only if \(\gamma = \gamma' \alpha \) for some \(\alpha \) in the image of \(\pi_1(A, x) \).

Show that two elements \(\lambda, \lambda' \) in \(\pi_1(X, A, x) \) have the same image in \(\pi_0(A) \) if and only if \(\lambda = \gamma \lambda' \) for some \(\gamma \in \pi_1(X, x) \).

Show that an element of \(\pi_0(A) \) maps to the component of \(x \) in \(\pi_0(X) \) if and only if it lifts to \(\pi_1(X, A, x) \).