Math 4242
Fall 2018
Sample Exam 2
11/26/2018
Time Limit: 50 minutes Instructor Alexander Voronov

The exam contains 7 pages (including this cover page) and 5 problems. Please check to see if any pages are missing.

- You may not use notes, books, the internet, etc. Only the exam paper, a pencil or pen may be kept on your desk during the test. Calculators are not allowed, either, but will not be needed. Ask me, and I will do any computation for you on my calculator.
- You may use any results we discussed in class or stated in the text, except for the statement of the problem itself!
- Show all of your work and justify your answers, unless stated otherwise, in order to receive full credit.
- If you need more room, use the back of the

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 15 |  |
| 2 | 10 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| Total: | 70 |  | pages.

- Please do not write in the table to the right.


## Good luck!

1. (15 points) In the following problem, use the standard Euclidean dot product.
(a) (5 points) Find a basis for the orthogonal complement of $W \subset \mathbb{R}^{4}$ where

$$
W=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right)\right\}
$$

(b) (10 points) Find an orthonormal basis for the space $W \subset \mathbb{R}^{4}$.
2. (10 points) For the following problems, circle TRUE or FALSE. If false, state why.
(a) (3 points) TRUE FALSE Let $Q$ be an orthogonal matrix. Then $\operatorname{det}(Q)= \pm 1$.
(b) (3 points) TRUE FALSE Every linearly independent basis is an orthogonal basis.
(c) (4 points) TRUE FALSE The quadratic function

$$
f(x, y)=x^{2}+6 x y-2 y^{2}-8 x+5 y+12
$$

has a unique global minimum.
3. (15 points) Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation whose matrix representation with respect to the standard basis is given by

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
4 & -1 & 1 \\
-2 & 0 & 0
\end{array}\right)
$$

Find the matrix representation of $L$ with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

4. (15 points) Describe a mass-spring chain with both ends fixed that gives rise to the potential energy function

$$
3 u_{1}^{2}-4 u_{1} u_{2}+3 u_{2}^{2}+u_{1}-3 u_{2}
$$

and find its equilibrium configuration.
5. (15 points) Let $A$ be a symmetric $3 \times 3$ matrix with eigenvalue and eigenvector pairs as follows:

$$
\begin{array}{ll}
\lambda_{1}=2, & \mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
\lambda_{2}=-1, & \mathbf{v}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \\
\lambda_{3}=-1, & \mathbf{v}_{3}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) .
\end{array}
$$

(a) (3 points) What is the determinant of $A$ ?
(b) (3 points) Is $A$ positive definite? Why or why not?
(c) (3 points) How many Jordan blocks for the Jordan canonical form of $A$ have? Briefly justify your answer. (You do not need to find the Jordan canonical form to answer this question!)
(d) (6 points) Write out the spectral factorization of $A$ if possible. If not, state why.

