3.3, FINITE ABELIAN GROUPS 155

3.2.4. Show that the permutation group S, is a semidirect product of
- Z; and the group of even permutations A,,.

3.2.5. Consider the set G of n-by-n matrices with entries in {0, +1} that
have exactly one nonzero entry in each row and column. These are
called signed permutation matrices. Show that G is a group, and that
G is a semidirect product of 5., and the group of diagonal matrices with
entries in{+1]. S,, acts on the group of diagonal matrices by permutation
of the diagonal entries.

One final example shows that direct products and semidirect
products do not exhaust the ways in which a normal subgroup N
and the quotient group G/N can be fit together to form a group G:

4.26. Z, has a subgroup isomorphic to Z,, namely the subgroup gener-
aled by (2]. The quotient Z,/Z; is also isomorphic to Z,. Nevertheless,
Ls is not a direct or semidirect product of two copies of Z.

3. Finite Abelian Groups

this section, we will obtain a definitive structure theorem and
ification of finite abelian groups. The theorem states that any
ite abelian group is a direct product of cyelic groups each of or-
@ power of a prime; furthermore, the number of the cyclic sub-
ps appearing in the direct product decomposition, and their
5, are unique.
Two finite abelian groups are isomorphic if, and only if, they
the same decomposition into a direct product of cyclic groups
prime power order.
All the groups in this section will be abelian, and, following a
n convention, we will use additive notation for the group
tion. In particular, the s'® power of an element x will be writ-
sx, and the order of an element x is the smallest natural num-
ssuch that sx = 0. All subgroups are normal, and the subgroup
ted by a family Ay,... A, of subgroups is A} + --- 4+ A, =
+---+0;:a; € Ay forall i}
We have the following elementary results on direct products of
ian groups, which may remind you of a result from linear alge-
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Proposition 3.3.1. Lef G be an abelian group with subgroups Ay, ... As

such that G = Aq+- - -+ As. Then the following conditions are equivalent:

(a) [ul,...,u,]n—rn1+-~-+ugismisamorphismqfﬂl>-:~~~xﬁ|.,_
onto G.

(b) Eachelement g € G can be expressed asasumx = ay +--- + Qs
wiMmEAiﬁrdliindeyﬂnfww.

(c) i'fl]=u1+---+uu,.wf£hm_EA1ﬁrnHi.thfﬁni=[Iﬁraiii.

Proof. This can be obtained from results about direct products for
general (not necessarily abelian) groups, but the proof for abelian
groups is very direct. The map in part (a) is a homomorphism, be-
cause the groups are abelian. (Check this.) By hypothesis the homo-
morphism is surjective, so (a) is equivalent to the injectivity of the
map. But (b) also states that the map is injective, and (c) states that
the kernel of the map is trivial. So all three assertions are equiva-
lent. |

Let G be a finite abelian group. For each prime number p define
Glp] = (g € G : olg) is a power of pl.

It is straightforward to check that Glp| is a subgroup of G. Note that
x € Glp] & p'x = 0 for some j + p'x = 0, where p is the largest
power of p dividing the order of the group. G[p| = {0} if p does not
divide the order of G.

The first step in our analysis of finite abelian groups is to show
that G is the (internal) direct product of the subgroups Glpl for p
dividing the order of G.

Theorem 3.3.2. Let G be a finite abelian group and let ps, ., . be the
primes dividing |Gl. Then G = Glp;] % --- x Gl

Proof. Write n = |G/, and let p]{' ..-p¥s be the prime decomposition
of n.

For each index ilet 7y = n,.-"pt‘*; that is, 1; is the largest divisor of
n that is relatively prime to p;. Forall x € G, we have mix £ Glpil
because p:LITiI] — nx = 0. Furthermore, if x € G[p;] for some j #§
then rjx = U, because 'pr‘ divides 1.

The greatest common divisor of {ry, ..., 1s)is 1. Therefore, there
exist ty,...,ts such that tyry + -+ tars = 1. Hence for any x £ G,
x = 1x = tyrx + -+« + t,Tsx € Glp] + Glp2l +--- + Glp.]. Thus
G = Glp] +- - + Glpsl.
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Suppose that Xi € Glpjl for 1 < i< sand 2% = 0. Fix an
index i. Since TiXj =0 forj # i, we have
0= r;l’Z X)) = Z Tikj = %

i

Because r; is relatively prime to the order of each nonzero element
of Glp), it follows that x; -

= 1. Thus by Proposition 3.3.1 G =Glp]x

) G.r'F"'sJ.I- |

The following lemma is the most subtle item in this section. You
might prefer

to skip the proof on the first reading.

ma 3.3.3, Lﬂﬁkuﬁuiteﬂbeﬂmgmup. Let m denote the maxi-
qftheardersqfekmutsaf{;,mktneGbea_;':reimmnrwdﬂm
.G — G/{a) be the quotient map, For every b G/(a), there is

i element b & G such that n(b) = b, and o(b) = o(h),

Proof. Denote the orderof bin G/(a)
B such that n(b,)

= b; this is possible

o(b11b = o(by (b, ) = 7ilo
therefore, r divides the order
W hypothesis. .
 Since 0 = rp — ntirby ), we have rb, ¢ {a}, say rb; = na for
einteger n withO0<n < m 1
I claim that n is divisible by r, say n
" moment, we have rb, — rqa, or v{b; — qa) = (. So, putting
= b; — qa, we have mb) = a(by) = b, and rb — 0; therefore,
(b)ir. On the other hand, because n(b) — b, we have rlo[b)] (just as
0 by ). It follows that o(b) =, as desired.

It remains to show that n is divisibl
£s < Then b, — qra + sq,

how that s — ), Assume s > (), in order to reach a contradiction.
Again, set b = b, — qa,

80 (b} = n(b;) = b, We know that
5] = m/a, where & = g.c.d.(s, m), by Proposition 2.2 33, Since
b is divisible by r,

by r. Let b; be any element of
because 7 is sy rjective. Then

fhl:'hll =7(0) =0
of by. On the other hand, o[b;) < m

.
F

= qr. Assuming this for

eby r. Writen = gr + s with
or (b — ga) = sa. We have to

olbl =ro(rb) = ro(sa) = rim/a) > rm/s = m.

e olb) < m, this js 3 contradiction,

L —
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Proof. We prove this by induction on the order of the abelian group,
there being nothing to prove if |G| = 1. So assume |G| > 1 and that
the assertion holds for all finite abelian groups of size strictly less
than |G|. Let a; be an element of G of maximum order r; > 1 and
put A; = {ap).

Applying the induction hypothesis to G/A,, suppose that G/A,
is a direct product of subgroups Az, As, .. ., Ay, where A; = (@;)
is cyclic of order ri for 2 < i < k. Let m: G — G/A; be the
quotient map. Using Lemma 3.3.3, let q; be a pre-image of a; of
order 1 foreach i, 2 < i < k, and let A| = {q;). We will show that
G=A]x Az = A

Foreach g € G, thereexist nj for2 < i < k such that w(g) =
¥ ami@i Thus, g — ¥ amiai € Ay = (a;), so there is an n; such
that g = ;. nia;. Thisshows that G = A; + Az +--- + A

Since each a; has order v;, an arbitrary element of A; can be
written as n;a;, with 0 < ny < r;. Suppose a sum of such elements
is zero: ¥ ., nqa; = 0. Applying 7 gives } ;.,nia; = 0. Since
G/A, is the internal direct product of the subgroups A; = (a;) for
2 < i < k, it follows from Proposition 3.3.1 that n;d; = Ofori = 2
Because the order of @; is 1 and 0 < n; < 1, we have ny = 0 for
i = 2. Hence also n;a; = 0 for i > 2, and, therefore, nja; = 0 as
well,

By Proposition 3.3.1, G is the direct product of the subgroups
Aul<i<k ]

3.3.5. If G is a finite abelian group and p is a prime dividing
the order of G, then G has an element of order p.

Proof. Since G is a direct product of cyclic groups, p divides the
order of some cyclic subgroup C of G, and C has an element of
order p by Proposition 2.2.32. n

Corollary 3.3.6. If G is a finite abelian group, then for each prime p, the
order of Glp) is the largest power of p dividing |G|.

ki

Proof. Glp] has, by definition, no element of order q, where q is
a prime different from p. Therefore, by the previous corollary, the
order of G|p| is a power of p. Since |G| = np \Glp]l, it follows that
|Glp]| is the largest power of p dividing |G|. [ |
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Corollary 3.3.7, Any finite abelian group is a direct prodyct of cyclic
smumﬂtchofuﬁﬁdrhnsmﬂnnmqfapﬁme.

Proof. A finite abelian group

We can now obtai

N a complete structyre theorem
groups whose order js

for abelian
a power of a prime,

338

LﬂGbeanﬂMfﬂngmupq{ﬂrdrrp“,mempisaprfm. There
exis!mtumhumbrrsmznzz---amm:hﬂmzim:n,
and G = n.x---xzpm.
Tﬁeseqme:y"ﬂponeﬂtsinpartrb}fsuﬂiqm. That is, if m; >
my >...> mhzi“‘j =M, and G

= Epm; X oo X Lome, then
S=randn = m for all i

Proof. By Proposition 3.34, G is a direct Product of cyclic groups,
each of which muyst have order 4 power of p by Lagrange’s theorem,
This gives (a),

We prove the uniqueness statement (b) by induction on n, the
@sen = 1 being trivial, So Suppose the uniqueness statement holds
for all abelian groups of order p"' where n’ < . Consider the

omorphism | x) = xP of G intp itself. Suppose

'!.n-]!‘--.r ﬂs] S Ilnl;---.ﬂn:.’rlr]r--'rlil

lm:,r..,mrl-—-tmh.,

M, 1L,1,..,1),
Ere N, = 1and n,.

> 1. Then the 1somorphism
G=Z,., X+ oo % Eyng
ives

p(G) =Zm1 % x T
d the isomorphism

FHJ-. 2
C=Zym x oo x Z o,

IIJlfG} = Epm:-] X oeeow EF-HT, 1-
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The first isomorphism yields

5 5
log, [@(G) =3 (mi-1)=) (i—-1)=n—s
i=1 i=1

and similarly the second isomorphism yields ]ngp lp(G)l=n—r.In
particular, r = 5. Now applying the induction hypothesis to ¢(G)
gives also s’ = randng—1=m; —1for1 < i< s'. This implies
y=m;forl <i<s | |

Example 3.3.9. Every abelian groups of order 32 is isomorphic to
one of the following: sz, e % Lz, g * Zy, Tgx Iy xZy
Ty x Ty x Ty, Ly xEypxdyxiy, Tp x Ty x Ep x Ty x Zp.

Let G be an abelian group of order p". There exist uniquely
determined natural numbers ny > ny = --- > ngsuch that 3 jny =
n,and G = Ty x -+ % Eyne. The sequence (ny,...,ns) is called
the type of G. The type of an abelian group of prime power order
determines the group up to isomorphism; two groups each of which
have order a power of p are isomorphic if, and only if, they have the
same type.

Example 3.3.10. A partition of a natural number n is a sequence of
natural numbers n; = ny > -+ = ngsuch that 3 ;n; = n. The type
of an abelian group of order p" is a partition of n, and the number
of different isomorphism classes of abelian groups of order p"™ is the
number of partitions of n. (The number does not depend on p.) For
example, the distinct partitions of 7 are (7), (6, 1), (5, 2), (5, 1, 1),

4,3),4,21),41,11),331,(322,321,1.6GLL11),

2,2,2,1),(221,1,1),(21,1,1,1,1) and (1, 1,1, 1,1, 1, 1). So there
are 15 different isomorphism classes of abelian groups of order p’
for any prime p.

Lemma 3.3.11. Suppose a finite abelian group G is an internal direct
product of a collection {C:} of cyclic subgroups. Then for each prime p,
the sum of those Cy whose order is a power of p is equal to Glpl. '

Proof. Denote by Alp] the sum of those C; whose order is a power
of p. Then Alp] € Glp] and G is the internal direct product of the
subgroups Alp]. Since G is also the internal direct product of the
subgroups Glpl, it follows that Alp] = Glpl for all p. [ |
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Example 3.3.12. Consider G — Lz % Fsp % Tas. Then
G = (Z3 x Ty x Zs) x (Zos x Ty) x (Z4 x Z7)
él{E;KE;XE:]KE}KI[EEXEﬂXFJ.

U5 G[2) = Zy x 7y x Zy, G[3] = 25, GI5] = Zps x Zs, and GI7] = Z,.
Glpl = 0 for all other primes p.

- Let G be a finite abelian group. By Corollary 3.3.7, G is iso-
orphic to a direct product of cyclic groups of prime power order.
suppose {(C; : 1 <4 < Niand {Dj:1 < j < M) are two families of
yelic subgroups of G of prime power order such that

G':C—lx---xfn =D1x---xDM.

w

e each CY and D' has order a power of p. According to the

evious lemma, Et:fi Cf = }:}E']": D = Glp] for each prime p

(CT1:1 <i< N(p)) ={ID1:1 <j < N(p)}.

ful]uwsthatM:Nand{.'CiIrIiiENJ:{!D; I=<j<NL. =

[ PIE"G ?EmKZmKEzgagaiﬂ.
* unique decomposition of G into cyclic groups of prime power
[OIE] is

Géiaxf—zxzzixzaxﬂ%xﬁsrx%-
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Another canonical direct product decomposition is obtained by re-
grouping the factors as follows:

G=(Zy x Ty x Zps x Br) ® (Ep = &) = &a
= Ly3a57 x f2s x Lo

= Eppoo % Eqp % Zp.

Corollary 3.3.15. If G is a finite abelian group, there exist unique natural
numbers my, Ma, . .., M, sich that mi > 2, my. divides m; for all 1 and
G=Fy % X By,

Proof. Exercise 3.3.6. [ |

Corollary 3.3.16. If G is a finite abelian group and m is the maximum of
orders of elements of G, then the order of any element of G divides m.

Proof. Exercize 3.3.8, | |

Corollary 3.3.17. Let K be a finite field of order n. Then the multiplica-
tive group of units of K is cyclic of order n— 1. In particular, for p a prime
number, the multiplicative group ®(p) of units of Zy, is cyclic of order
r—1L

Proof. Let K* denote the multiplicative group of nonzero elements
of K. Then K* is abelian of order n — 1. Let m denote the maximum
of the orders of elements of K*. We want to show that m = n — 1.
On the one hand, m < n—1, since every element has order dividing
the order of the group. On the other hand, according to Corollary
3.3.16, x™ = 1 for all elements x € K*, so that the equation x™—1 =0
has n — 1 distinct solutions in the field K. But the number of distinct
roots of a polynomial in a field is never more than the degree of the
pﬂl}mmmial (Corollary 1.8.25),son — 1 < m. [ |

Remark 3.3.18. Note that while the proof insures that the group of
units of K* is cyclic, it does not provide a means of actually finding
a generator! In particular, it is not obvious how to find a nonzero
element of Z,, of multiplicative order p — 1.

The rest of this section is devoted to working out the structure
of the group ®(N) of units in Zy. Recall that @M has order @[N],
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where ¢ is the Euler ¢ function. We have just determined that for
aprime p, &(p| is cyclic of order p — 1.

position 3.3.19.
E IfN has prime decomposition N =p:“p}‘~--p§*,mm
O(N) = O(py') x D(pk) x ... x D(pk),

b)  @®(2)and ©(4) are cyclic. ©(2n) =Zy x Tyazifn >3,
e} Ifpis an odd prime, then for all n, D(p") = Zp“"{p-hlj
an—I xX Z,__l.

Proof. You are asked to Prove part (a) in Exercise 3.3.9.
The groups @(2) and D(4) are of

50 they are necessarily cyclic. For n > 3, we have already seen in
Example 2.2.34 that @2

| is not cyclic and that @(2n | contains three
distinct elements of order 2, and in Exercise 2.2.30 that [3] has order
2! in ®(2"). The cyclic subgroup (3]} contains exactly one of the
elements of order 2. If a is an element of order 2 not contained
n ([3]), then () ([31) = 1], so the subgroup generated by (a) and
{13]) is a direct product, isomorphic to Z3 % Ton 1. Because lD(2%)) =
Mo % 2, 3| =21 (o have @(2m) — (a) x {3]) = 25 x Z, .. This
tompletes the proof of part (b).
Now let p be an odd prime, and letn > 1.
S10ws that @ (p) is cyclic whenn = 1, so we
Using Lemma 3.3.17, we obtain a natura
Bl =1 imod p) and a' &1 (mod p) for

Lemma 3.3.17 already
can assume n > 2,
I number a such that

! t<p-—1.

- We claim that the order of [a"" '] in D(p")is (p — 1). In any

ase, (aP" ' )Pl = gp" Yip-1) =1 (mod p") so the order { of [a?" ']
P — 1. But we have a” = a [mod rl.soa’™’

= a (mod p),
=a' (modp). If¢ P =1, then a"" " = gf is not

nt to 1 modulo p, so it is not congruent to 1 modyle p™.
erefore, the order of (7" ']

i8p —1 as claimed.
It follows from Exercise 1.9.10 that the order of P+1]ind (p™)
'p""I.

We now have elements x — [a®"

1
M l]F:'q [

']Gforderp -landy =[p 1]
order p™ ! in ®(p"). Since the orders of x and y are relatively
ime, the order of the product xy is the product of

the orders
p —1). Thus D{p™) is cyclic.
ther way to finish the



L}

164 3. PRODUCTS OF GROUFS

Remark 3.3.20. All of the isomorphisms here are explicit, as long as
we are able to find a generator for ®(p) for all primes p appearing
in the decompositions.

Exercises 3.3

3.3.1. Find all abelian groups of order 108.
3.3.2. Find all abelian groups of order 144.

3.3.3. How many abelian groups are there of order 128, up to isomor-
phism?

3.3.4. How many abelian groups are there of order p q*, where p and
q are distinct primes?

3.3.5. Show that Z, x Iy is not cyclic if g.cd.(a,b) =2

3.3.6. Prove Corollary 3.3.15. Hint: You need towork out how the m,; are
related to the orders of the cyclic groups of prime power order appearing
in the fundamental theorem. The unigueness follows because the my
and the orders of the cyclic groups of prime power order determine one
another.

3.3.7. Determine the decomposition G = Ty, * -~ % Zm, given in the
last exercise for finite abelian groups G or order 108 and 144.

3.3.8. Prove Corollary 3.3.16.

3.3.9. Recall that if a and b are relatively prime natural numbers, then
Togp = Eg x Ly as rings.

(a) If a, b are relatively prime natural numbers, show that the ring
isomorphism Zgn = Z, x Zy implies that Olab) = ®(a)xQ(b).

(b) Show that if N = p}'---pk* is the prime decomposition of N,
then

D(N) = O(pi) x -+ x BlpS*).

(c) Since these group isomorphisms are obtained independently
of our earlier computations of ¢(N|, show that we can recover
the multiplicativity of the Euler ¢ function from the group theory
results. Namely, conclude from from parts (a) - (c) that ¢(ab) =
wla)@(b] if a, b are relatively prime, and that if N = phi .- pks,
then @[N] = l_[iq:ll:p::i'l.

3.3.10. Find the structure of the group ®@(n ) forn < 20,



