4. (a) Setting \(\theta = 0 \) gives \((2/\pi) - (4/\pi) \sum_{m=1}^{\infty} 1/(4m^2 - 1) = 0 \) or \(\sum_{m=1}^{\infty} 1/(4m^2 - 1) = 1/2 \), a result also obtainable from the observation that \((4m^2 - 1)^{-1} = 1/2[(2m - 1)^{-1} - (2m + 1)^{-1}] \), so that the series telescopes. Setting \(\theta = \frac{1}{2} \pi \) gives 1 = \((2/\pi) - (4/\pi) \sum_{m=1}^{\infty} (-1)^m/(4m^2 - 1) \), or \(\sum_{m=1}^{\infty} (-1)^m/(4m^2 - 1) = (\pi - 2)/4 \).

(b) Setting \(\theta = \pi \) gives \(\pi^2 = (\pi^2/3) + 4 \sum_{n=1}^{\infty} 1/n^2 \) or \(\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6 \); setting \(\theta = 0 \) gives 0 = \((\pi^2/3) + 4 \sum_{n=1}^{\infty} (-1)^n/n^2 \) or \(\sum_{n=1}^{\infty} (-1)^n/n^2 = \pi^2/12 \).

(c) Setting \(\theta = 0 \) gives 1 = \([(\sinh \pi b)/\pi] \sum_{n=-\infty}^{\infty} (-1)^n/(b - in) \). The \(n = 0 \) term is 1/b, and for \(n > 0 \) the sum of the \(n \)th and \((-n)\)th terms is 2b(1)/((b^2 + n^2)); thus 1 = \([(\sinh \pi b)/\pi] \left[(1/b) + 2b \sum_{n=1}^{\infty} (-1)^n/(b^2 + n^2)\right] \), or \(\sum_{n=1}^{\infty} (-1)^n/(b^2 + n^2) = (\pi \text{csch} \pi b - 1)/2b^2 \). Setting \(\theta = \pi \) gives \([(\sinh \pi b)/\pi] \sum_{n=-\infty}^{\infty} 1/(b - in) = \frac{1}{2}(e^{\pi b} + e^{-\pi b}) = \cosh \pi b \). (The function represented by the series is discontinuous at \(\theta = \pi \), so the sum of the series is the average of the left and right hand limits!) Again the \(n = 0 \) term is 1/b, and for \(n > 0 \) the sum of the \(n \)th and \((-n)\)th terms is 2b(1)/((b^2 + n^2)), so \((1/b) + \sum_{n=1}^{\infty} 2b/(b^2 + n^2) = \pi \coth \pi b \) and hence \(\sum_{n=1}^{\infty} 1/(b^2 + n^2) = (\pi b \coth \pi b - 1)/2b^2 \).