8.5 Applications to Differential Equations

1. (a) The Fourier cosine series for \(f(x) = \pi \) on \([0, 100]\) is
\[
50 - (400/\pi^2) \sum_{n=1}^{\infty} \cos(2n-1)(\pi x/100)/(2n-1)^2, \]
so the solution (8.35) of the heat equation is
\[
u(x, t) = 50 - (400/\pi^2) \sum_{n=1}^{\infty} \cos(2n-1)(\pi x/100)/(2n-1)^2.
\]
(b) When \(t = 60 \), the error in discarding the terms after \(m = 2 \) is
\[
\left| \frac{400}{\pi^2} \sum_{n=1}^{\infty} e^{-0.0066(2m-1)^2 \pi^2 \pi (2m-1)^2/\pi^2} \frac{1}{(2n-1)^2} \right| \leq \frac{400}{\pi^2} e^{-0.0066} \sum_{n=3}^{\infty} \frac{1}{(2n-1)^2} \approx 0.48.
\]
To within this error, \(u(x, 60) \approx 50 - (400/\pi^2) [e^{-0.0066 \pi^2} \cos(\pi x/100) + \frac{1}{2} e^{-0.0066} \pi^2 \cos(3\pi x/100)] \approx 50 - (37.97) \cos(\pi x/100) - (2.51) \cos(3\pi x/100) \), which is about 10 when \(x = 0, 12 \), when \(x = 10 \), and 40 when \(x = 40 \).

(c) For \(t \geq 3600 \), \(|u(x, t) - 50| \leq (400/\pi^2) e^{-0.0066} \sum_{n=1}^{\infty} 1/(2n-1)^2 = 50 e^{-0.396} \approx 1.0037 \).

Almost good enough, but not quite! A slightly less crude estimate works: \(|u(x, t) - 50| \leq (400/\pi^2) e^{-0.396} \sum_{n=1}^{\infty} 1/(2n-1)^2 \approx (400/\pi^2) e^{-0.396} \approx 0.81 \).

2. One follows the separation-of-variables procedure as on p. 382 to find solutions of the form \(e^{-k^2t} \left(C_0 \cos \sqrt{\alpha} \theta + C_2 \sin \sqrt{\alpha} \theta \right) \). The periodicity condition then forces \(\sqrt{\alpha} = n \pi \), so the resulting analog of (8.35) is \(u(\theta, t) = \sum_{n=0}^{\infty} e^{-k^2t} \pi^2 \frac{2}{\pi} \frac{\sin n \pi \theta}{\sin \pi \theta} \cos \pi n \theta \). To satisfy the initial condition one takes \(\sum_{n=0}^{\infty} (a_n \cos n \theta + b_n \sin n \theta) \) to be the Fourier series of \(f(\theta) \). (The result: looks a little neater in exponential form: \(u(\theta, t) = \sum_{n=0}^{\infty} c_n e^{-k^2t} n \pi^2 k^2 + i n \theta \) where \(f(\theta) = \sum_{n=0}^{\infty} c_n e^{in \theta} \).

3. If \(u(x, t) = \sum_{n=0}^{\infty} b_n(t) \sin n \pi x/l \) is to satisfy \(\partial_t u = k \partial^2_t u + G(t) \), where \(G(x, t) = \sum_{n=0}^{\infty} 2 \pi \sin n \pi x/l \), we must have \(b_n'(t) = -k \pi^2 b_n(t) + \beta(t) \), assuming that termwise differentiation of the series is justified. To solve this ordinary differential equation, multiply through by the integrating factor \(e^{k \pi^2 t} \) to obtain \((d/dt) [b_n(t) e^{k \pi^2 t}] = c_n e^{k \pi^2 t} \beta(t) \), whence \(b_n(t) e^{k \pi^2 t} = b_n(0) + \int_0^t e^{-k \pi^2 s} \beta(t) \) ds. For this to work, the following conditions are (more) than sufficient: (1) \(f \) is of class \(C^1 \) on \([0, l]\) and \(f(0) = f(1) = 0 \). (2) \(G(x, t) \) is \(C^2 \) as a function of \(x \in [0, l] \) for each \(t \), \(G(0, t) = G(l, t) = 0 \), and \(G(x, t) \), \(\partial_x G(x, t) \), and \(\partial^2_x G(x, t) \) are jointly continuous as functions of \(x \in [0, l] \) and \(t \geq 0 \). The boundary conditions on \(f \) and \(G \) guarantee that their odd periodic extensions are still at least \(C^1 \), and that of \(\partial^2_x G \) is at least piecewise continuous. It follows that the Fourier sine coefficients of \(f \) (namely, \(b_n(0) \)) are absolutely summable, and those of \(G \) (namely, \(\beta(t) \)) are continuous in \(t \) and satisfy \(|\beta(t)| \leq C \pi^{-2} \) for \(t \) in any finite interval \([0, T] \). Then we have
\[
|b_n(t)| \leq e^{-k \pi^2 t} \left[|b_n(0)| + C \pi^{-2} \int_0^t e^{-k \pi^2 s} \beta(s) \right] \leq e^{-k \pi^2 t} |b_n(0)| + \frac{C}{k \pi^2} \int_0^t \beta(s) \,
\]
This is enough to guarantee the absolute and uniform convergence of the series defining \(u(x, t) \) for \(x \in [0, l] \) and \(t \in [0, T] \), as well as the absolute and uniform convergence of the series defining \(\partial_t u(x, t) \) and \(\partial^2_x u(x, t) \) for \(x \in [0, l] \) and \(t \in [\epsilon, T] \) (\(\epsilon > 0 \)), so that all formal calculations are justified.

4. (a) The odd periodic extension of the initial displacement \(u(x, 0) \) is \(mg(\pi x/l) \) where \(g \) is as in Exercise 2, §8.2, with \(a = \pi b/l \), so its Fourier sine series can be read off from the answer to that exercise. The series for \(u(x, t) \) can then be read off from (8.37).

(b) When \(b = (0.1) \), we have \(2l^2/\pi^2 (1 - b) = 200/24 \approx 200/9 \approx .844 \), and \(n^{-2} \sin((.4)n \pi) \approx .951, .147, -0.065, -0.059, 0 \) when \(n = 1, 2, 3, 4, 5 \), so the first five coefficients (up to the overall factor of \(m \)) are \(200, 124, -0.055, -0.050, 0 \). When \(b = (0.1) \), we have \(2l^2/\pi^2 (1 - b) = 200/9 \approx 2.252 \), and \(n^{-2} \sin((1.1)n \pi) \approx .309, .147, .090, .059, .040 \) when \(n = 1, 2, 3, 4, 5 \). So the first five coefficients are (in \(m \) times) \(.696, .331, .203, .133, .090 \). (Note: The \(L^2 \) norm of the initial displacement \(u(\cdot, 0) \) is \(m \sqrt{1/3} \), independent of \(b \), so the total energy of these waves is independent of \(b \) and a direct comparison of the coefficients is appropriate.)