Problem 2. Prove that if \(f \) is a continuous function from \(\mathbb{R}^n \) to \(\mathbb{R}^k \), then for any open subset \(U \) of \(\mathbb{R}^k \), the pre-image
\[
V = \{ x \in \mathbb{R}^n : f(x) \in U \}
\]
is an open set in \(\mathbb{R}^n \).

For every point \(x \in V \), take an open ball \(B(r, f(x)) \) which will be in \(U \). Since \(U \) is open, \(\exists \) a ball \(B(r, f(x)) \) contained in \(U \). Since \(f(x) \) is continuous at \(x \), for each \(\varepsilon > 0 \), in particular, \(\varepsilon = r \), \(\exists \) \(\delta > 0 \):
\[
| f(y) - f(x) | < \varepsilon = r \quad \text{whenever} \quad \| y - x \| < \delta,
\]

or, equivalently,
\[
f(y) \in B(r, f(x)) \quad \text{whenever} \quad y \in B(\delta, x).
\]
This shows that \(B(r, x) \subset V \) (because \(B(r, f(x)) \subset U \)).