Math 4606. Fall 2006.

Solutions to Exam 1

1. (20 points) Let \(X \) and \(Y \) be two non-empty sets and let \(f \) be a one-to-one function from \(X \) to \(Y \). Let \(A \) be a subset of \(X \). Show that \(f(X \setminus A) \) is a subset of \(Y \setminus f(A) \).

Solution. Let \(y \in f(X \setminus A) \), then \(y = f(x) \) for some \(x \in X \setminus A \). Suppose \(y \in f(A) \). Then there is \(x' \in A \): \(y = f(x') \). Since \(A \) and \(X \setminus A \) are disjoint, \(x \neq x' \). Therefore \(y = f(x) = f(x') \) with \(x \neq x' \) which contradicts \(f \) being one-to-one. Thus \(y \notin f(A) \), which means \(y \in Y \setminus f(A) \). Hence \(f(X \setminus A) \subset Y \setminus f(A) \).

2. (20 points) Let \(f \) be a function from \(\mathbb{R}^2 \) to \(\mathbb{R} \) given by

\[
f(x, y) = \begin{cases}
2xy & \text{if } (x, y) \neq (0, 0), \\
0 & \text{if } (x, y) = (0, 0).
\end{cases}
\]

Does the limit \(\lim_{(x,y) \to (0,0)} f(x, y) \) exist? Why? Find the limit if it does.

Solution. Let us look at \(\lim_{x \to 0} f(x, 0) \) and \(\lim_{x \to 0} f(x, x) \). The first limit exists and is equal to 0, because \(f(x, 0) = 0 \) for all \(x \). The second limit may be computed by computing the function \(f(x, x) \) for \(x \neq 0 \) as follows:

\[
f(x, x) = \frac{2x^2}{x^2 + 5x^4} = \frac{2}{1 + 5x^2}.
\]

Hence \(\lim_{x \to 0} f(x, x) = 2 \). Thus, we obtain two different limits as \((x, y) \) approaches \((0, 0)\) along two different lines, which implies that \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist.

3. (20 points) Let \(f, g \) and \(h \) be three real-valued functions on \(\mathbb{R}^n \) satisfying

\[g(x) \leq f(x) \leq h(x) \text{ for all } x \in \mathbb{R}^n. \]

Let \(a \in \mathbb{R}^n \) and \(L \in \mathbb{R} \) and suppose that

\[\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L. \]

Prove that \(\lim_{x \to a} f(x) = L \).

Solution. Let \(\varepsilon > 0 \). Since \(\lim_{x \to a} g(x) = L \), there is \(\delta_1 > 0 \) such that

\[-\varepsilon < g(x) - L < \varepsilon \text{ whenever } 0 < |x - a| < \delta_1. \]

Similarly, there is \(\delta_2 > 0 \) such that

\[-\varepsilon < h(x) - L < \varepsilon \text{ whenever } 0 < |x - a| < \delta_2. \]
Let $\delta = \min\{\delta_1, \delta_2\}$. Let x be in \mathbb{R}^n such that $0 < |x - a| < \delta$. We have $0 < |x - a| < \delta_1$ and hence by (1):

$$f(x) - L \geq g(x) - L > -\varepsilon.$$

We have $0 < |x - a| < \delta_2$ and hence by (2):

$$f(x) - L \leq h(x) - L < \varepsilon.$$

Therefore $|f(x) - L| < \varepsilon$. Thus $\lim_{x \to a} f(x) = L$.

4. (20 points) Show that the set

$$S = \{(x, y) \in \mathbb{R}^2 : xy > 5 \text{ and } y + x^2 + 3x < 13\}$$

is an open set in \mathbb{R}^2.

Solution. We write $S = A \cap B$ where

$$A = \{(x, y) \in \mathbb{R}^2 : xy > 5\}, \quad B = \{(x, y) \in \mathbb{R}^2 : y + x^2 + 3x < 13\}.$$

Let $f_1(x, y) = xy$ and $f_2(x, y) = y + x^2 + 3x$. We know that f_1 and f_2 are continuous on \mathbb{R}^2. Since $A = f_1^{-1}((5, \infty))$ and $(5, \infty)$ is open, we obtain A is open. Similarly, $B = f_2^{-1}((-\infty, 13))$ is open. Therefore S is open, for being an intersection of two open sets.

5. (20 points) Find the limit

$$\lim_{k \to \infty} \frac{-3k^3 + 8k^2 - 7k + 11}{4k^3 - k^2 + 5}.$$

Solution. Divide the denominator and numerator by k^3, we have

$$\frac{-3k^3 + 8k^2 - 7k + 11}{4k^3 - k^2 + 5} = \frac{a_k}{b_k},$$

where

$$a_k = -3 + \frac{8}{k} - \frac{7}{k^2} + \frac{11}{k^3}, \quad b_k = 4 - \frac{1}{k} + \frac{5}{k^3}.$$

We have $\lim_{k \to \infty} a_k = -3$ and $\lim_{k \to \infty} b_k = 4 \neq 0$, hence

$$\lim_{k \to \infty} \frac{-3k^3 + 8k^2 - 7k + 11}{4k^3 - k^2 + 5} = \lim_{k \to \infty} \frac{a_k}{b_k} = -\frac{3}{4}.$$