Problem C. If \(p(x) \) is a polynomial of even degree with the leading coefficient \(a_{2n} > 0 \), then \(\lim_{|x| \to \infty} p(x) = \infty \). After that the argument is identical to the proof of Theorem 2.83a in the textbook.

Problem D. We will use sequential continuity, Theorem 1.15. If \(p \neq 0 \) or \(1 \), then there will always be a sequence \(\{a_n\} \) of rationals converging to \(p \), for which the sequence \(\{f(a_n)\} \) will converge to \(1 - p \), and a sequence \(\{b_n\} \) of irrationals converging to \(p \), for which the sequence \(\{f(b_n)\} \) will converge to \(1 - p^2 \). Since for \(p \neq 0 \) or \(1 \), we have \(1 - p \neq 1 - p^2 \), this implies that \(f(x) \) will be discontinuous at such \(p \).

If \(p = 0 \) or \(1 \), then the values of \(f(x) \) at both rationals and irrationals near \(p \) will be given by the two continuous functions, which both happen to converge to \(f(p) \). Thus, if we have any sequence \(\{c_n\} \) converging to \(p \), then the sequence \(\{f(c_n)\} \) will be made of two sequences, the rational subsequence and the irrational one, each of which converges to \(f(p) \). Therefore, the sequence \(\{f(c_n)\} \) will converge to \(f(p) \).

Problem F. (i) Given \(\varepsilon > 0 \), take \(\delta = \varepsilon / 2M \). Then for each \(x, y \), such that \(|x - y| < \delta \), we have \(|f(x) - f(y)| = |f'(c)(x - y)| \leq M\delta = \varepsilon / 2 < \varepsilon \).

(ii) Take \(\varepsilon = 1 \). Then for any \(\delta > 0 \), take a natural number \(n \) such that \(n(2n + 1) > 1/\delta \), so that \(x = 1/n \) and \(y = 1/(n + 1/2) \) will be less than \(\delta \) apart. Then \(|\sin \pi / x - \sin \pi / y| = |0 - \sin \pi (n + 1/2)| = 1 \geq \varepsilon \). This implies the function is not uniformly continuous.