You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test. For this sample test, pretend you are in a test situation and time yourself for 100 minutes, which is how long the actual test will be.

Good luck!

Problem 1. Let \(A = (6, 0) \), \(B = (0, -6) \), \(C = (0, 0) \), \(X = (0, -3) \), \(Y = (4, 0) \). Find \(Z \) on \(AB \) such that \(AX \), \(BY \), and \(CZ \) meet at a common point.

Problem 2. Fill in each blank in (a), (b), (c) and (d) with a single word; no work need be shown.

(a) The medians of any triangle meet at the ____________ of that triangle.

(b) The perpendicular bisectors of the sides of a triangle meet at the ____________ of that triangle.

(c) The following three points are collinear: the centroid, the orthocenter, and the ____________ of any triangle.

(d) Two types of isometries whose fixed-point sets are empty are glide reflections and ____________.

Problem 3. For any isosceles triangle whose largest angle has measure \(3\pi/4 \) prove that the ratio of the length of the longest side to that of the shorter sides is \(\sqrt{2 + \sqrt{2}} \).

Hint: The simplest approach involves the cosine function but no trigonometric identities.

Problem 4. For an arbitrary triangle \(\triangle ABC \) find the barycentric coordinates (in terms of the side lengths) of the point where the angle bisector of the angle at \(C \) meets the side \(\overrightarrow{AB} \). [You may use the fact that the barycentric representation of the incenter is

\[
\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}, \frac{c}{a+b+c} \right)
\]

where \(a, b, \) and \(c \) are the lengths of the sides opposite \(A, B, \) and \(C, \) respectively.]

Problem 5. Give an example of a convex quadrangle \(ABCD \) that is not a parallelogram but which has the properties that \(\overrightarrow{AB} \) is parallel to \(\overrightarrow{CD} \) and \(|\overrightarrow{BC}| = |\overrightarrow{DA}| \). A clear picture with appropriate labels will suffice (even if not drawn very well).

Problem 6. Let \(P = (5, 5) \). Find a point \(Q \) on the circle \(\|X\| = 1 \) such that the line \(\overrightarrow{PQ} \) is tangent to the circle.

Date: November 9, 2011.
Problem 7. Under inversion in the circle of radius 2 centered at (0, 0), where does the point (3, 0) get mapped? That is, find $\mathcal{I}(3, 0)$.

Problem 8. Find the equation of the Poincaré line that is incident with the points (0, 2) and (3, 7).